20 research outputs found

    Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data

    Full text link
    Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MTL must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer architecture consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data for weight updates). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets. Our code is publicly available at https://github.com/CAMTL/CA-MTL.Comment: ICLR 2021 (Reprint

    Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering

    Full text link
    We train a language model (LM) to robustly answer multistep questions by generating and answering sub-questions. We propose Chain-of-Questions, a framework that trains a model to generate sub-questions and sub-answers one at a time by leveraging human annotated question decomposition meaning representation (QDMR). The key technical challenge is that QDMR only contains sub-questions but not answers to those sub-questions, so we treat sub-answers as latent variables and optimize them using a novel dynamic mixture of Hard-EM and MAPO. Chain-of-Questions greatly outperforms strong neuro-symbolic methods by 9.0 F1 on DROP contrast set, and outperforms GPT-3.5 by 24.3 F1 on HOTPOTQA adversarial set, thus demonstrating the effectiveness and robustness of our framework.Comment: 12 pages, 2 figure

    A Lightweight Method to Generate Unanswerable Questions in English

    Full text link
    If a question cannot be answered with the available information, robust systems for question answering (QA) should know _not_ to answer. One way to build QA models that do this is with additional training data comprised of unanswerable questions, created either by employing annotators or through automated methods for unanswerable question generation. To show that the model complexity of existing automated approaches is not justified, we examine a simpler data augmentation method for unanswerable question generation in English: performing antonym and entity swaps on answerable questions. Compared to the prior state-of-the-art, data generated with our training-free and lightweight strategy results in better models (+1.6 F1 points on SQuAD 2.0 data with BERT-large), and has higher human-judged relatedness and readability. We quantify the raw benefits of our approach compared to no augmentation across multiple encoder models, using different amounts of generated data, and also on TydiQA-MinSpan data (+9.3 F1 points with BERT-large). Our results establish swaps as a simple but strong baseline for future work.Comment: Accepted to Findings of EMNLP 202
    corecore