17 research outputs found

    Progressive Data Science: Potential and Challenges

    Get PDF
    Data science requires time-consuming iterative manual activities. In particular, activities such as data selection, preprocessing, transformation, and mining, highly depend on iterative trial-and-error processes that could be sped up significantly by providing quick feedback on the impact of changes. The idea of progressive data science is to compute the results of changes in a progressive manner, returning a first approximation of results quickly and allow iterative refinements until converging to a final result. Enabling the user to interact with the intermediate results allows an early detection of erroneous or suboptimal choices, the guided definition of modifications to the pipeline and their quick assessment. In this paper, we discuss the progressiveness challenges arising in different steps of the data science pipeline. We describe how changes in each step of the pipeline impact the subsequent steps and outline why progressive data science will help to make the process more effective. Computing progressive approximations of outcomes resulting from changes creates numerous research challenges, especially if the changes are made in the early steps of the pipeline. We discuss these challenges and outline first steps towards progressiveness, which, we argue, will ultimately help to significantly speed-up the overall data science process

    ProS: Data Series Progressive k-NN Similarity Search and Classification with Probabilistic Quality Guarantees

    Full text link
    Existing systems dealing with the increasing volume of data series cannot guarantee interactive response times, even for fundamental tasks such as similarity search. Therefore, it is necessary to develop analytic approaches that support exploration and decision making by providing progressive results, before the final and exact ones have been computed. Prior works lack both efficiency and accuracy when applied to large-scale data series collections. We present and experimentally evaluate ProS, a new probabilistic learning-based method that provides quality guarantees for progressive Nearest Neighbor (NN) query answering. We develop our method for k-NN queries and demonstrate how it can be applied with the two most popular distance measures, namely, Euclidean and Dynamic Time Warping (DTW). We provide both initial and progressive estimates of the final answer that are getting better during the similarity search, as well suitable stopping criteria for the progressive queries. Moreover, we describe how this method can be used in order to develop a progressive algorithm for data series classification (based on a k-NN classifier), and we additionally propose a method designed specifically for the classification task. Experiments with several and diverse synthetic and real datasets demonstrate that our prediction methods constitute the first practical solutions to the problem, significantly outperforming competing approaches. This paper was published in the VLDB Journal (2022)

    Provenance Management for Collaborative Data Science Workflows

    Get PDF
    Collaborative data science activities are becoming pervasive in a variety of communities, and are often conducted in teams, with people of different expertise performing back-and-forth modeling and analysis on time-evolving datasets. Current data science systems mainly focus on specific steps in the process such as training machine learning models, scaling to large data volumes, or serving the data or the models, while the issues of end-to-end data science lifecycle management are largely ignored. Such issues include, for example, tracking provenance and derivation history of models, identifying data processing pipelines and keeping track of their evolution, analyzing unexpected behaviors and monitoring the project health, and providing the ability to reason about specific analysis results. We address these challenges by ingesting, managing, and analyzing rich provenance information generated during data science projects, and using it to enable users to easily publish, share, and discover data analytics projects. We first describe the design of our unified provenance and metadata management system, called ProvDB. We adopt a schema-later approach and use a flexible graph-based provenance representation model that combines the core concepts in version control and provenance management. We describe several ingestion mechanisms for this provenance model and show how heterogeneous data analysis environments can be served with natural extensions to this framework. We also describe a set of novel features of the system including graph queries for retrospective provenance, fileviews for data transformations, introspective queries for debugging, and continuous monitoring queries for anomaly detection. We then illustrate how to support deep learning modeling lifecycle via the extensibility mechanism in ProvDB. We describe techniques to compactly store and efficiently query the rich set of data artifacts generated during deep learning modeling lifecycle. We also describe a high-level domain specific language that helps raise the abstraction level during model exploration and enumeration and accelerate the modeling process. Lastly, we propose graph query operators and develop efficient evaluation techniques to address the verbose and evolving nature of such provenance graphs. First, we introduce a graph segmentation operator, which queries the provenance of a collection of user-given vertices (e.g., versioned files, author names) via flexible boundary criteria. Second, we propose a graph summarization operator to aggregate the results of multiple segmentation operations, and allow multi-resolution interaction with the aggregation result to understand similar and abnormal behaviors in those segments

    The Pipeline for the Continuous Development of Artificial Intelligence Models -- Current State of Research and Practice

    Full text link
    Companies struggle to continuously develop and deploy AI models to complex production systems due to AI characteristics while assuring quality. To ease the development process, continuous pipelines for AI have become an active research area where consolidated and in-depth analysis regarding the terminology, triggers, tasks, and challenges is required. This paper includes a Multivocal Literature Review where we consolidated 151 relevant formal and informal sources. In addition, nine-semi structured interviews with participants from academia and industry verified and extended the obtained information. Based on these sources, this paper provides and compares terminologies for DevOps and CI/CD for AI, MLOps, (end-to-end) lifecycle management, and CD4ML. Furthermore, the paper provides an aggregated list of potential triggers for reiterating the pipeline, such as alert systems or schedules. In addition, this work uses a taxonomy creation strategy to present a consolidated pipeline comprising tasks regarding the continuous development of AI. This pipeline consists of four stages: Data Handling, Model Learning, Software Development and System Operations. Moreover, we map challenges regarding pipeline implementation, adaption, and usage for the continuous development of AI to these four stages.Comment: accepted in the Journal Systems and Softwar

    Navigating Diverse Datasets in the Face of Uncertainty

    Get PDF
    When exploring big volumes of data, one of the challenging aspects is their diversity of origin. Multiple files that have not yet been ingested into a database system may contain information of interest to a researcher, who must curate, understand and sieve their content before being able to extract knowledge. Performance is one of the greatest difficulties in exploring these datasets. On the one hand, examining non-indexed, unprocessed files can be inefficient. On the other hand, any processing before its understanding introduces latency and potentially un- necessary work if the chosen schema matches poorly the data. We have surveyed the state-of-the-art and, fortunately, there exist multiple proposal of solutions to handle data in-situ performantly. Another major difficulty is matching files from multiple origins since their schema and layout may not be compatible or properly documented. Most surveyed solutions overlook this problem, especially for numeric, uncertain data, as is typical in fields like astronomy. The main objective of our research is to assist data scientists during the exploration of unprocessed, numerical, raw data distributed across multiple files based solely on its intrinsic distribution. In this thesis, we first introduce the concept of Equally-Distributed Dependencies, which provides the foundations to match this kind of dataset. We propose PresQ, a novel algorithm that finds quasi-cliques on hypergraphs based on their expected statistical properties. The probabilistic approach of PresQ can be successfully exploited to mine EDD between diverse datasets when the underlying populations can be assumed to be the same. Finally, we propose a two-sample statistical test based on Self-Organizing Maps (SOM). This method can outperform, in terms of power, other classifier-based two- sample tests, being in some cases comparable to kernel-based methods, with the advantage of being interpretable. Both PresQ and the SOM-based statistical test can provide insights that drive serendipitous discoveries

    BIG DATA AND ANALYTICS AS A NEW FRONTIER OF ENTERPRISE DATA MANAGEMENT

    Get PDF
    Big Data and Analytics (BDA) promises significant value generation opportunities across industries. Even though companies increase their investments, their BDA initiatives fall short of expectations and they struggle to guarantee a return on investments. In order to create business value from BDA, companies must build and extend their data-related capabilities. While BDA literature has emphasized the capabilities needed to analyze the increasing volumes of data from heterogeneous sources, EDM researchers have suggested organizational capabilities to improve data quality. However, to date, little is known how companies actually orchestrate the allocated resources, especially regarding the quality and use of data to create value from BDA. Considering these gaps, this thesis – through five interrelated essays – investigates how companies adapt their EDM capabilities to create additional business value from BDA. The first essay lays the foundation of the thesis by investigating how companies extend their Business Intelligence and Analytics (BI&A) capabilities to build more comprehensive enterprise analytics platforms. The second and third essays contribute to fundamental reflections on how organizations are changing and designing data governance in the context of BDA. The fourth and fifth essays look at how companies provide high quality data to an increasing number of users with innovative EDM tools, that are, machine learning (ML) and enterprise data catalogs (EDC). The thesis outcomes show that BDA has profound implications on EDM practices. In the past, operational data processing and analytical data processing were two “worlds” that were managed separately from each other. With BDA, these "worlds" are becoming increasingly interdependent and organizations must manage the lifecycles of data and analytics products in close coordination. Also, with BDA, data have become the long-expected, strategically relevant resource. As such data must now be viewed as a distinct value driver separate from IT as it requires specific mechanisms to foster value creation from BDA. BDA thus extends data governance goals: in addition to data quality and regulatory compliance, governance should facilitate data use by broadening data availability and enabling data monetization. Accordingly, companies establish comprehensive data governance designs including structural, procedural, and relational mechanisms to enable a broad network of employees to work with data. Existing EDM practices therefore need to be rethought to meet the emerging BDA requirements. While ML is a promising solution to improve data quality in a scalable and adaptable way, EDCs help companies democratize data to a broader range of employees
    corecore