28 research outputs found

    A flexible framework for evaluating user and item fairness in recommender systems

    Full text link
    This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11257-020-09285-1One common characteristic of research works focused on fairness evaluation (in machine learning) is that they call for some form of parity (equality) either in treatment—meaning they ignore the information about users’ memberships in protected classes during training—or in impact—by enforcing proportional beneficial outcomes to users in different protected classes. In the recommender systems community, fairness has been studied with respect to both users’ and items’ memberships in protected classes defined by some sensitive attributes (e.g., gender or race for users, revenue in a multi-stakeholder setting for items). Again here, the concept has been commonly interpreted as some form of equality—i.e., the degree to which the system is meeting the information needs of all its users in an equal sense. In this work, we propose a probabilistic framework based on generalized cross entropy (GCE) to measure fairness of a given recommendation model. The framework comes with a suite of advantages: first, it allows the system designer to define and measure fairness for both users and items and can be applied to any classification task; second, it can incorporate various notions of fairness as it does not rely on specific and predefined probability distributions and they can be defined at design time; finally, in its design it uses a gain factor, which can be flexibly defined to contemplate different accuracy-related metrics to measure fairness upon decision-support metrics (e.g., precision, recall) or rank-based measures (e.g., NDCG, MAP). An experimental evaluation on four real-world datasets shows the nuances captured by our proposed metric regarding fairness on different user and item attributes, where nearest-neighbor recommenders tend to obtain good results under equality constraints. We observed that when the users are clustered based on both their interaction with the system and other sensitive attributes, such as age or gender, algorithms with similar performance values get different behaviors with respect to user fairness due to the different way they process data for each user clusterThe authors thank the reviewers for their thoughtful comments and suggestions. This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades (Reference: 123496 Y. Deldjoo et al. PID2019-108965GB-I00) and in part by the Center for Intelligent Information Retrieval. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor

    ATEE Spring Conference 2020-2021

    Get PDF
    This book collects some of the works presented at ATEE Florence Spring Conference 2020-2021. The Conference, originally planned for May 2020, was forcefully postponed due to the dramatic insurgence of the pandemic. Despite the difficulties in this period, the Organising Committee decided anyway to keep it, although online and more than one year later, not to disperse the huge work of authors, mainly teachers, who had to face one of the hardest challenges in the last decades, in a historic period where the promotion of social justice and equal opportunities – through digital technologies and beyond – is a key factor for democratic citizenship in our societies. The Organising Committee, the University of Florence, and ATEE wish to warmly thank all the authors for their commitment and understanding, which ensured the success of the Conference. We hope this book could be, not only a witness of these pandemic times, but a hopeful sign for an equal and inclusive education in all countries

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System
    corecore