11 research outputs found

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications

    Proceedings of the 15th ISWC workshop on Ontology Matching (OM 2020)

    Get PDF
    15th International Workshop on Ontology Matching co-located with the 19th International Semantic Web Conference (ISWC 2020)International audienc

    Génération automatique d'alignements complexes d'ontologies

    Get PDF
    Le web de données liées (LOD) est composé de nombreux entrepôts de données. Ces données sont décrites par différents vocabulaires (ou ontologies). Chaque ontologie a une terminologie et une modélisation propre ce qui les rend hétérogènes. Pour lier et rendre les données du web de données liées interopérables, les alignements d'ontologies établissent des correspondances entre les entités desdites ontologies. Il existe de nombreux systèmes d'alignement qui génèrent des correspondances simples, i.e., ils lient une entité à une autre entité. Toutefois, pour surmonter l'hétérogénéité des ontologies, des correspondances plus expressives sont parfois nécessaires. Trouver ce genre de correspondances est un travail fastidieux qu'il convient d'automatiser. Dans le cadre de cette thèse, une approche d'alignement complexe basée sur des besoins utilisateurs et des instances communes est proposée. Le domaine des alignements complexes est relativement récent et peu de travaux adressent la problématique de leur évaluation. Pour pallier ce manque, un système d'évaluation automatique basé sur de la comparaison d'instances est proposé. Ce système est complété par un jeu de données artificiel sur le domaine des conférences.The Linked Open Data (LOD) cloud is composed of data repositories. The data in the repositories are described by vocabularies also called ontologies. Each ontology has its own terminology and model. This leads to heterogeneity between them. To make the ontologies and the data they describe interoperable, ontology alignments establish correspondences, or links between their entities. There are many ontology matching systems which generate simple alignments, i.e., they link an entity to another. However, to overcome the ontology heterogeneity, more expressive correspondences are sometimes needed. Finding this kind of correspondence is a fastidious task that can be automated. In this thesis, an automatic complex matching approach based on a user's knowledge needs and common instances is proposed. The complex alignment field is still growing and little work address the evaluation of such alignments. To palliate this lack, we propose an automatic complex alignment evaluation system. This system is based on instances. A famous alignment evaluation dataset has been extended for this evaluation

    Knowledge Patterns for the Web: extraction, tranformation and reuse

    Get PDF
    This thesis aims at investigating methods and software architectures for discovering what are the typical and frequently occurring structures used for organizing knowledge in the Web. We identify these structures as Knowledge Patterns (KPs). KP discovery needs to address two main research problems: the heterogeneity of sources, formats and semantics in the Web (i.e., the knowledge soup problem) and the difficulty to draw relevant boundary around data that allows to capture the meaningful knowledge with respect to a certain context (i.e., the knowledge boundary problem). Hence, we introduce two methods that provide different solutions to these two problems by tackling KP discovery from two different perspectives: (i) the transformation of KP-like artifacts to KPs formalized as OWL2 ontologies; (ii) the bottom-up extraction of KPs by analyzing how data are organized in Linked Data. The two methods address the knowledge soup and boundary problems in different ways. The first method provides a solution to the two aforementioned problems that is based on a purely syntactic transformation step of the original source to RDF followed by a refactoring step whose aim is to add semantics to RDF by select meaningful RDF triples. The second method allows to draw boundaries around RDF in Linked Data by analyzing type paths. A type path is a possible route through an RDF that takes into account the types associated to the nodes of a path. Then we present K~ore, a software architecture conceived to be the basis for developing KP discovery systems and designed according to two software architectural styles, i.e, the Component-based and REST. Finally we provide an example of reuse of KP based on Aemoo, an exploratory search tool which exploits KPs for performing entity summarization

    Methods for Matching of Linked Open Social Science Data

    Get PDF
    In recent years, the concept of Linked Open Data (LOD), has gained popularity and acceptance across various communities and domains. Science politics and organizations claim that the potential of semantic technologies and data exposed in this manner may support and enhance research processes and infrastructures providing research information and services. In this thesis, we investigate whether these expectations can be met in the domain of the social sciences. In particular, we analyse and develop methods for matching social scientific data that is published as Linked Data, which we introduce as Linked Open Social Science Data. Based on expert interviews and a prototype application, we investigate the current consumption of LOD in the social sciences and its requirements. Following these insights, we first focus on the complete publication of Linked Open Social Science Data by extending and developing domain-specific ontologies for representing research communities, research data and thesauri. In the second part, methods for matching Linked Open Social Science Data are developed that address particular patterns and characteristics of the data typically used in social research. The results of this work contribute towards enabling a meaningful application of Linked Data in a scientific domain

    From people to entities : typed search in the enterprise and the web

    Get PDF
    [no abstract

    Deciding Agent Orientation on Ontology Mappings

    Full text link

    Facilitating Ontology Reuse Using User-Based Ontology Evaluation

    Get PDF

    Improving Schema Mapping by Exploiting Domain Knowledge

    Get PDF
    This dissertation addresses the problem of semi-automatically creating schema mappings. The need for developing schema mappings is a pervasive problem in many integration scenarios. Although the problem is well-known and a large body of work exists in the area, the development of schema mappings is today largely performed manually in industrial integration scenarios. In this thesis an approach for the semi-automatic creation of high quality schema mappings is developed

    Towards a Linked Semantic Web: Precisely, Comprehensively and Scalably Linking Heterogeneous Data in the Semantic Web

    Get PDF
    The amount of Semantic Web data is growing rapidly today. Individual users, academic institutions and businesses have already published and are continuing to publish their data in Semantic Web standards, such as RDF and OWL. Due to the decentralized nature of the Semantic Web, the same real world entity may be described in various data sources with different ontologies and assigned syntactically distinct identifiers. Furthermore, data published by each individual publisher may not be complete. This situation makes it difficult for end users to consume the available Semantic Web data effectively. In order to facilitate data utilization and consumption in the Semantic Web, without compromising the freedom of people to publish their data, one critical problem is to appropriately interlink such heterogeneous data. This interlinking process is sometimes referred to as Entity Coreference, i.e., finding which identifiers refer to the same real world entity. In the Semantic Web, the owl:sameAs predicate is used to link two equivalent (coreferent) ontology instances. An important question is where these owl:sameAs links come from. Although manual interlinking is possible on small scales, when dealing with large-scale datasets (e.g., millions of ontology instances), automated linking becomes necessary. This dissertation summarizes contributions to several aspects of entity coreference research in the Semantic Web. First of all, by developing the EPWNG algorithm, we advance the performance of the state-of-the-art by 1% to 4%. EPWNG finds coreferent ontology instances from different data sources by comparing every pair of instances and focuses on achieving high precision and recall by appropriately collecting and utilizing instance context information domain-independently. We further propose a sampling and utility function based context pruning technique, which provides a runtime speedup factor of 30 to 75. Furthermore, we develop an on-the-fly candidate selection algorithm, P-EPWNG, that enables the coreference process to run 2 to 18 times faster than the state-of-the-art on up to 1 million instances while only making a small sacrifice in the coreference F1-scores. This is achieved by utilizing the matching histories of the instances to prune instance pairs that are not likely to be coreferent. We also propose Offline, another candidate selection algorithm, that not only provides similar runtime speedup to P-EPWNG but also helps to achieve higher candidate selection and coreference F1-scores due to its more accurate filtering of true negatives. Different from P-EPWNG, Offline pre-selects candidate pairs by only comparing their partial context information that is selected in an unsupervised, automatic and domain-independent manner.In order to be able to handle really heterogeneous datasets, a mechanism for automatically determining predicate comparability is proposed. Combing this property matching approach with EPWNG and Offline, our system outperforms state-of-the-art algorithms on the 2012 Billion Triples Challenge dataset on up to 2 million instances for both coreference F1-score and runtime. An interesting project, where we apply the EPWNG algorithm for assisting cervical cancer screening, is discussed in detail. By applying our algorithm to a combination of different patient clinical test results and biographic information, we achieve higher accuracy compared to its ablations. We end this dissertation with the discussion of promising and challenging future work
    corecore