658 research outputs found

    A Semantic-enabled Framework For Future Internet Of Things Applications

    Get PDF
    While the challenge of connecting Internet of Things (IoT) devices at the lowest layer has been widely studied, integrating and interoperating huge amounts of sensed data of heterogeneous IoT devices is becoming increasingly important because of the possibility of consuming such data in supporting many potential novel IoT applications. A common approach to processing and consuming IoT data is a centralized paradigm: sensor data is sent over the network to a comparatively powerful central server or a cloud service, where all processing takes place. However, this approach has some limitations as it requires devices to interact directly with a cloud which is not cost effective. First, it has high demands on the device's storage and computational capabilities. Second, as devices grow rapidly in a deployment area, sending all the data to a centralized cloud server requires high network bandwidth. Moreover, this often creates data privacy concerns as all raw data will be sent to a centralized place. To address the above limitations for building future Internet of Things applications, we present an early design of a novel framework that combines Internet of Things, Semantic Web, and Big Data concepts. We not only present the core components to build an IoT system, but also list existing alternatives with their merits. This framework aims to incorporate open standards to address the potential challenges in building future IoT applications. Therefore, our discussion revolves around open standards to build the framework, rather than proprietary standards

    Smart City Analytics: Ensemble-Learned Prediction of Citizen Home Care

    Full text link
    We present an ensemble learning method that predicts large increases in the hours of home care received by citizens. The method is supervised, and uses different ensembles of either linear (logistic regression) or non-linear (random forests) classifiers. Experiments with data available from 2013 to 2017 for every citizen in Copenhagen receiving home care (27,775 citizens) show that prediction can achieve state of the art performance as reported in similar health related domains (AUC=0.715). We further find that competitive results can be obtained by using limited information for training, which is very useful when full records are not accessible or available. Smart city analytics does not necessarily require full city records. To our knowledge this preliminary study is the first to predict large increases in home care for smart city analytics

    Seasonal Web Search Query Selection for Influenza-Like Illness (ILI) Estimation

    Full text link
    Influenza-like illness (ILI) estimation from web search data is an important web analytics task. The basic idea is to use the frequencies of queries in web search logs that are correlated with past ILI activity as features when estimating current ILI activity. It has been noted that since influenza is seasonal, this approach can lead to spurious correlations with features/queries that also exhibit seasonality, but have no relationship with ILI. Spurious correlations can, in turn, degrade performance. To address this issue, we propose modeling the seasonal variation in ILI activity and selecting queries that are correlated with the residual of the seasonal model and the observed ILI signal. Experimental results show that re-ranking queries obtained by Google Correlate based on their correlation with the residual strongly favours ILI-related queries
    • …
    corecore