10 research outputs found

    Implementación de Slack Stealing y una tarea planificadora en nxtOSEK sobre Lego Mindstorms NXT 2.0

    Get PDF
    Este trabajo presenta una implementación, utilizando el Sistema Operativo de Tiempo Real nxtOSEK y el kit de robótica educativa Lego Mindstorms NXT 2.0, en configuración segway, de un método de Slack Stealing para la administración del tiempo ocioso en un Sistema de Tiempo Real, junto con una Tarea Planificadora que aprovecha el mismo para la ejecución concurrente de tareas periódicas y esporádicas, sin que las primeras pierdan sus vencimientos. Mediante este desarrollo, se pueden ejecutar tareas no críticas de manera concurrente, sin afectar las tareas críticas que mantienen el segway en equilibrio.Sociedad Argentina de Informática e Investigación Operativ

    Interference-Aware Schedulability Analysis and Task Allocation for Multicore Hard Real-Time Systems

    Full text link
    [EN] There has been a trend towards using multicore platforms for real-time embedded systems due to their high computing performance. In the scheduling of a multicore hard real-time system, there are interference delays due to contention of shared hardware resources. The main sources of interference are memory, cache memory, and the shared memory bus. These interferences are a great source of unpredictability and they are not always taken into account. Recent papers have proposed task models and schedulability algorithms to account for this interference delay. The aim of this paper is to provide a schedulability analysis for a task model that incorporates interference delay, for both fixed and dynamic priorities. We assume an implicit deadline task model. We rely on a task model where this interference is integrated in a general way, without depending on a specific type of hardware resource. There are similar approaches, but they consider fixed priorities. An allocation algorithm to minimise this interference (Imin) is also proposed and compared with existing allocators. The results show how Imin has the best rates in terms of percentages of schedulability and increased utilisation. In addition, Imin presents good results in terms of solution times.This work was supported under Grant PLEC2021-007609 funded by MCIN/ AEI/ 10.13039/ 501100011033 and by the "European Union NextGenerationEU/PRTR".Aceituno-Peinado, JM.; Guasque Ortega, A.; Balbastre, P.; Simó Ten, JE.; Crespo, A. (2022). Interference-Aware Schedulability Analysis and Task Allocation for Multicore Hard Real-Time Systems. Electronics. 11(9):1-21. https://doi.org/10.3390/electronics1109131312111

    Adaptive Quality of Service Control in Distributed Real-Time Embedded Systems

    Get PDF
    An increasing number of distributed real-time embedded systems face the critical challenge of providing Quality of Service (QoS) guarantees in open and unpredictable environments. For example, such systems often need to enforce CPU utilization bounds on multiple processors in order to avoid overload and meet end-to-end dead-lines, even when task execution times deviate significantly from their estimated values or change dynamically at run-time. This dissertation presents an adaptive QoS control framework which includes a set of control design methodologies to provide robust QoS assurance for systems at different scales. To demonstrate its effectiveness, we have applied the framework to the end-to-end CPU utilization control problem for a common class of distributed real-time embedded systems with end-to-end tasks. We formulate the utilization control problem as a constrained multi-input-multi-output control model. We then present a centralized control algorithm for small or medium size systems, and a decentralized control algorithm for large-scale systems. Both algorithms are designed systematically based on model predictive control theory to dynamically enforce desired utilizations. We also introduce novel task allocation algorithms to ensure that the system is controllable and feasible for utilization control. Furthermore, we integrate our control algorithms with fault-tolerance mechanisms as an effective way to develop robust middleware systems, which maintain both system reliability and real-time performance even when the system is in face of malicious external resource contentions and permanent processor failures. Both control analysis and extensive experiments demonstrate that our control algorithms and middleware systems can achieve robust utilization guarantees. The control framework has also been successfully applied to other distributed real-time applications such as end-to-end delay control in real-time image transmission. Our results show that adaptive QoS control middleware is a step towards self-managing, self-healing and self-tuning distributed computing platform

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    WICC 2016 : XVIII Workshop de Investigadores en Ciencias de la Computación

    Get PDF
    Actas del XVIII Workshop de Investigadores en Ciencias de la Computación (WICC 2016), realizado en la Universidad Nacional de Entre Ríos, el 14 y 15 de abril de 2016.Red de Universidades con Carreras en Informática (RedUNCI
    corecore