70 research outputs found

    A Comprehensive Study on Off-path SmartNIC

    Full text link
    SmartNIC has recently emerged as an attractive device to accelerate distributed systems. However, there has been no comprehensive characterization of SmartNIC especially on the network part. This paper presents the first comprehensive study of off-path SmartNIC. Our experimental study uncovers the key performance characteristics of the communication among the client, SmartNIC SoC, and the host. We find without considering SmartNIC hardware architecture, communications with it can cause up to 48% bandwidth degradation due to performance anomalies. We also propose implications to address the anomalies.Comment: This is the short version. Full version will appear at OSDI2

    Participation Cost Estimation: Private Versus Non-Private Study

    Full text link
    In our study, we seek to learn the real-time crowd levels at popular points of interests based on users continually sharing their location data. We evaluate the benefits of users sharing their location data privately and non-privately, and show that suitable privacy-preserving mechanisms provide incentives for user participation in a private study as compared to a non-private study

    End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract

    Get PDF
    We report our experience in the formal verification of the deposit smart contract, whose correctness is critical for the security of Ethereum 2.0, a new Proof-of-Stake protocol for the Ethereum blockchain. The deposit contract implements an incremental Merkle tree algorithm whose correctness is highly nontrivial, and had not been proved before. We have verified the correctness of the compiled bytecode of the deposit contract to avoid the need to trust the underlying compiler. We found several critical issues of the deposit contract during the verification process, some of which were due to subtle hidden bugs of the compiler.Ope

    Stadium: A Distributed Metadata-Private Messaging System

    Get PDF
    Private communication over the Internet remains a challenging problem. Even if messages are encrypted, it is hard to deliver them without revealing metadata about which pairs of users are communicating. Scalable anonymity systems, such as Tor, are susceptible to traffic analysis attacks that leak metadata. In contrast, the largest-scale systems with metadata privacy require passing all messages through a small number of providers, requiring a high operational cost for each provider and limiting their deployability in practice. This paper presents Stadium, a point-to-point messaging system that provides metadata and data privacy while scaling its work efficiently across hundreds of low-cost providers operated by different organizations. Much like Vuvuzela, the current largest-scale metadata-private system, Stadium achieves its provable guarantees through differential privacy and the addition of noisy cover traffic. The key challenge in Stadium is limiting the information revealed from the many observable traffic links of a highly distributed system, without requiring an overwhelming amount of noise. To solve this challenge, Stadium introduces techniques for distributed noise generation and differentially private routing as well as a verifiable parallel mixnet design where the servers collaboratively check that others follow the protocol. We show that Stadium can scale to support 4X more users than Vuvuzela using servers that cost an order of magnitude less to operate than Vuvuzela nodes
    • …
    corecore