146 research outputs found

    Unsupervised Extraction of Representative Concepts from Scientific Literature

    Full text link
    This paper studies the automated categorization and extraction of scientific concepts from titles of scientific articles, in order to gain a deeper understanding of their key contributions and facilitate the construction of a generic academic knowledgebase. Towards this goal, we propose an unsupervised, domain-independent, and scalable two-phase algorithm to type and extract key concept mentions into aspects of interest (e.g., Techniques, Applications, etc.). In the first phase of our algorithm we propose PhraseType, a probabilistic generative model which exploits textual features and limited POS tags to broadly segment text snippets into aspect-typed phrases. We extend this model to simultaneously learn aspect-specific features and identify academic domains in multi-domain corpora, since the two tasks mutually enhance each other. In the second phase, we propose an approach based on adaptor grammars to extract fine grained concept mentions from the aspect-typed phrases without the need for any external resources or human effort, in a purely data-driven manner. We apply our technique to study literature from diverse scientific domains and show significant gains over state-of-the-art concept extraction techniques. We also present a qualitative analysis of the results obtained.Comment: Published as a conference paper at CIKM 201

    Falcon 2.0: An Entity and Relation Linking Tool over Wikidata

    Get PDF
    The Natural Language Processing (NLP) community has significantly contributed to the solutions for entity and relation recognition from a natural language text, and possibly linking them to proper matches in Knowledge Graphs (KGs). Considering Wikidata as the background KG, there are still limited tools to link knowledge within the text to Wikidata. In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata. It receives a short natural language text in the English language and outputs a ranked list of entities and relations annotated with the proper candidates in Wikidata. The candidates are represented by their Internationalized Resource Identifier (IRI) in Wikidata. Falcon 2.0 resorts to the English language model for the recognition task (e.g., N-Gram tiling and N-Gram splitting), and then an optimization approach for the linking task. We have empirically studied the performance of Falcon 2.0 on Wikidata and concluded that it outperforms all the existing baselines. Falcon 2.0 is open source and can be reused by the community; all the required instructions of Falcon 2.0 are well-documented at our GitHub repository (https://github.com/SDM-TIB/falcon2.0). We also demonstrate an online API, which can be run without any technical expertise. Falcon 2.0 and its background knowledge bases are available as resources at https://labs.tib.eu/falcon/falcon2/

    Smart City Analytics: Ensemble-Learned Prediction of Citizen Home Care

    Full text link
    We present an ensemble learning method that predicts large increases in the hours of home care received by citizens. The method is supervised, and uses different ensembles of either linear (logistic regression) or non-linear (random forests) classifiers. Experiments with data available from 2013 to 2017 for every citizen in Copenhagen receiving home care (27,775 citizens) show that prediction can achieve state of the art performance as reported in similar health related domains (AUC=0.715). We further find that competitive results can be obtained by using limited information for training, which is very useful when full records are not accessible or available. Smart city analytics does not necessarily require full city records. To our knowledge this preliminary study is the first to predict large increases in home care for smart city analytics

    Evaluation Measures for Relevance and Credibility in Ranked Lists

    Full text link
    Recent discussions on alternative facts, fake news, and post truth politics have motivated research on creating technologies that allow people not only to access information, but also to assess the credibility of the information presented to them by information retrieval systems. Whereas technology is in place for filtering information according to relevance and/or credibility, no single measure currently exists for evaluating the accuracy or precision (and more generally effectiveness) of both the relevance and the credibility of retrieved results. One obvious way of doing so is to measure relevance and credibility effectiveness separately, and then consolidate the two measures into one. There at least two problems with such an approach: (I) it is not certain that the same criteria are applied to the evaluation of both relevance and credibility (and applying different criteria introduces bias to the evaluation); (II) many more and richer measures exist for assessing relevance effectiveness than for assessing credibility effectiveness (hence risking further bias). Motivated by the above, we present two novel types of evaluation measures that are designed to measure the effectiveness of both relevance and credibility in ranked lists of retrieval results. Experimental evaluation on a small human-annotated dataset (that we make freely available to the research community) shows that our measures are expressive and intuitive in their interpretation
    corecore