3 research outputs found

    A Double Siamese Framework for Differential Morphing Attack Detection

    Get PDF
    Face morphing and related morphing attacks have emerged as a serious security threat for automatic face recognition systems and a challenging research field. Therefore, the availability of effective and reliable morphing attack detectors is strongly needed. In this paper, we proposed a framework based on a double Siamese architecture to tackle the morphing attack detection task in the differential scenario, in which two images, a trusted live acquired image and a probe image (morphed or bona fide) are given as the input for the system. In particular, the presented framework aimed to merge the information computed by two different modules to predict the final score. The first one was designed to extract information about the identity of the input faces, while the second module was focused on the detection of artifacts related to the morphing process. Experimental results were obtained through several and rigorous cross-dataset tests, exploiting three well-known datasets, namely PMDB, MorphDB, and AMSL, containing automatic and manually refined facial morphed images, showing that the proposed framework was able to achieve satisfying results

    Single and Differential Morph Attack Detection

    Get PDF
    Face recognition systems operate on the assumption that a person\u27s face serves as the unique link to their identity. In this thesis, we explore the problem of morph attacks, which have become a viable threat to face verification scenarios precisely because of their inherent ability to break this unique link. A morph attack occurs when two people who share similar facial features morph their faces together such that the resulting face image is recognized as either of two contributing individuals. Morphs inherit enough visual features from both individuals that both humans and automatic algorithms confuse them. The contributions of this thesis are two-fold: first, we investigate a morph detection methodology that utilizes wavelet sub-bands to differentiate bona fide and morph images. Second, we investigate the usefulness of morphing identical twins to train a network robustly. Although not always discernible in the image domain, many morphing algorithms introduce artifacts in the final image that can be leveraged for morph attack detection. Because wavelet decomposition allows us to separately examine low and high frequency data, we can identify and isolate these morphing artifacts in the spatial frequency domain. To this end, a wavelet-based deep learning approach to detect morph imagery is proposed and evaluated. We examine the efficacy of wavelet sub-bands for both single and differential morph attack detection and compare performance to other methods in the literature. Finally, experiments are done on a large scale morph dataset created using twins. This high quality morph twins dataset is used to train a single morph detector. The details of this detector are explained and the resulting morph detector is submitted to the NIST FRVT test for objective evaluation, where our detector exhibited promising results

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    corecore