18 research outputs found

    Eelco Visser: The Oregon Connection

    Get PDF
    This paper shares some memories of Eelco gathered over the past 25 years as a colleague and friend, and reflects on the nature of modern international collaborations

    Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

    Get PDF
    Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geändert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung für das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geändert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte Ansätze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geändert wurde, können während eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurückfallen Konsistenz dadurch wiederherzustellen, dass sie das geänderte Modell (bzw. große Teile von ihm) neu übersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstützt (Attribute und negative Constraints), durchgängig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen Ansätzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nämlich Korrektheit, Vollständigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf Neuübersetzung zurückzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende Beiträge zur Theorie der algebraischen Graphtransformation. Zunächst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln führt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher müssen wir sicherstellen, dass die für Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gültig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhält, die nötig sind, um die Theorie für Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsätzlichen Beiträge es uns, unsere Lösung für das grundlegende Modellsynchronisationsproblem vollständig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models), one of which has been changed, is given and consistency shall be restored. Triple graph grammars (TGGs) are an established and suitable formalism to address this and related problems. Being based on the algebraic theory of graph transformation and (double-)pushout rewriting, they are especially suited to develop solutions whose properties can be formally proven. Despite being established, many TGG-based solutions do not satisfactorily deal with the problem of information loss. When one model is changed, in the process of restoring consistency such solutions may lose information that is only present in the second model because the synchronization process resorts to restoring consistency by re-translating (large parts of) the updated model. We introduce a TGG-based approach that supports advanced features of TGGs (attributes and negative constraints), is comprehensively formalized, implemented, and is incremental in the sense that it drastically reduces the amount of information loss compared to former approaches. Up to now, a TGG-based approach with these characteristics is not available. The central contribution of this thesis is to formally develop that approach and to prove its essential properties, namely correctness, completeness, and termination. The crucial new idea in our approach is the use of repair rules, which are special rules that allow one to directly propagate changes from one model to the other instead of resorting to re-translation. To be able to construct and apply these repair rules, we contribute more fundamentally to the theory of algebraic graph transformation. First, we develop a new kind of sequential rule composition. Whereas the conventional composition of rules leads to rules that delete and re-create elements, we can compute rules that preserve such elements instead. Furthermore, technically the setting in which the synchronization process we develop takes place is the category of partial triple graphs and not the one of ordinary triple graphs. Hence, we have to ensure that the elaborate theory of double-pushout rewriting still applies. Therefore, we develop a (category-theoretic) construction of new categories from given ones and show that (i) this construction preserves the axioms that are necessary to develop the theory of double-pushout rewriting and (ii) partial triple graphs can be constructed as such a category. Together, those two more fundamental contributions enable us to develop our solution to the basic model synchronization problem in a fully formal manner and to prove its central properties

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Synbit:Synthesizing Bidirectional Programs using Unidirectional Sketches

    Get PDF

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    When models of a system change, analyses based on them have to be reevaluated in order for the results to stay meaningful. In many cases, the time to get updated analysis results is critical. This thesis proposes multiple, combinable approaches and a new formalism based on category theory for implicitly incremental model analyses and transformations. The advantages of the implementation are validated using seven case studies, partially drawn from the Transformation Tool Contest (TTC)

    Avoiding Unnecessary Information Loss: Correct and Efficient Model Synchronization Based on Triple Graph Grammars

    Full text link
    Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple Graph Grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs.Comment: 33 pages, 20 figures, 3 table

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    In vielen Ingenieursdisziplinen werden Modelle verwendet, um Systeme verschiedenster Art auf einem hohen Abstraktionsgrad zu beschreiben. Auf diesem Abstraktionsgrad ist es häufig einfacher, Aussagen über den Zustand des Systems zu treffen. Wenn sich Modelle eines Systems ändern – beispielsweise, weil sich das System selbst geändert hat – müssen Analysen auf Grundlage dieses Modells jedoch neu berechnet werden, um weiterhin gültig zu sein. In vielen Fällen ist diese Neuberechnung der Analyseergebnisse zeitkritisch. Da sich oft nur kleine Teile des Modells ändern, könnten zwar große Teile des letzten Analysedurchlaufs durch eine inkrementelle Ausführung der Analyse wiederverwendet werden, in der Praxis ist eine solche Inkrementalisierung aber nicht trivial und oft fehleranfällig. Eine Lösungsmöglichkeit für dieses Problem bietet der Ansatz der impliziten Inkrementalisierung, bei der ein inkrementeller Algorithmus für eine gegebene Analyse aus der Batch-Spezifikation abgeleitet wird. Aus der Spezifikation wird ein dynamischer Abhängigkeitsgraph konstruiert, der es erlaubt, nur die Teile einer Analyse neu auszuwerten, die von einer Änderung tatsächlich betroffen sind. Damit lassen sich Vorteile einer Inkrementalisierung nutzen, ohne dass der Code angepasst werden muss und die Lesbarkeit des Analysecodes leidet. Leider unterstützen derzeitige Verfahren für implizite Inkrementalisierung nur eine bestimmte Klasse von Analysen, sind auf eine Inkrementalisierung auf Ebene von einzelnen Instruktionen beschränkt oder benötigen eine explizite Zustandsverwaltung. Auch mit diesen Verbesserungen ist unklar, in welchen Fällen eine Inkrementalisierung Vorteile bringt, da in einigen Szenarien Änderungen Schmetterlingseffekte verursachen können und eine Wiederverwertung des letzten Analysedurchlaufs keinerlei Beschleunigungspotential hat. Diese Dissertation behandelt diese Probleme bei impliziter Inkrementalisierung von Modellanalysen mittels mehrerer Verfahren, die größtenteils kombinierbar sind. Desweiteren wird ein neuer Formalismus vorgestellt, mit dessen Hilfe Inkrementalisierungssysteme auch für uni- oder bidirektionale Modelltransformationen einsetzbar sind. Um die Korrektheit der entstehenden inkrementellen Modellanalysen zu definieren und zu zeigen, wird Inkrementalisierung in Kategorientheorie als Funktor beschrieben. Ein erstes Verfahren ermöglicht als direkte Konsequenz der formalen Darstellung die Inkrementalisierung auf Ebene von Methodenaufrufen, sodass für häufig verwendete Operatoren eine optimierte Inkrementalisierung zur Verfügung gestellt werden kann. Durch Erweiterung des Funktors auf Verteilung lassen sich auf ähnliche Weise auch etwaige Speicherprobleme lösen. Ein zweites Verfahren vereinfacht die entstehenden dynamischen Abhängigkeitsgraphen, indem Teile der Analyse durch eine generalisierte Betrachtung von Modelländerungen mit mehreren Strategien zusammengefasst werden können. Die Auswahl der Strategien ermöglicht dem Entwickler eine Anpassung der Inkrementalisierung auf einen konkreten Anwendungsfall. Alternativ kann für ein gegebenes Szenario auch durch automatische Entwurfsraumexploration eine (Pareto-) optimale Konfiguration hinsichtlich Speicherverbrauch und Antwortzeit der Aktualisierung eines Analyseergebnisses nach einer Modelländerung gefunden werden. Die Kombination dieser Verfahren ermöglicht es, die Performanz von Inkrementalisierungen so zu verbessern, dass diese bis auf einmalige Initialisierung nie schlechter ist als die batchmäßige Wiederholung der Analyse, in vielen Fällen aber teils deutlich schneller sein kann. Generische Operatoren, die in vielen Modellanalysen wiederverwendet werden, können für die Inkrementalisierung durch geeignete Algorithmen spezifisch optimiert werden, während komplexe Domänenlogik durch das System optimiert werden kann. Durch den impliziten Ansatz geschehen diese Verbesserungen vollautomatisch und transparent für den Entwickler der Modellanalyse. Obwohl der so geschaffene Ansatz Turing-mächtig und somit universell einsetzbar ist, gibt es doch gerade in der modellgetriebenen Entwicklung eine Klasse von Artefakten, die eine besondere Betrachtung erfordern, da sie sich im Allgemeinen nur schwer mit gewöhnlichen objekt-orientierten Sprachen beschreiben lassen: Modelltransformationen. Daher wird in dieser Dissertation ein neuer Formalismus und eine darauf aufbauende Sprache vorgestellt, die Modelltransformationen so beschreiben, dass diese leicht mit Hilfe eines Inkrementalisierungssystems inkrementell ausgeführt werden können. Die Synchronisierung einer Modelländerung ist hierbei bewiesen korrekt und hippokratisch. Alle Verfahren wurden implementiert und in das .NET Modeling Framework integriert, welches Entwickler auf der .NET Plattform bei der modellgetriebenen Entwicklung unterstützen soll. Die entstandenen Vorteile aller Verfahren hinsichtlich Performanz werden anhand von sieben Fallstudien in verschiedenen Domänen validiert. Insbesondere werden hierzu fünf Fallstudien des Transformation Tool Contests (TTC) der Jahre 2015 bis 2017 herangezogen, für die auch mit anderen Ansätzen verfasste Lösungen zur Verfügung stehen. Die Ausdrucksmächtigkeit der Modelltransformationssprache wird durch eine Transformation der in der modellgetriebenen Entwicklung weit verbreiteten Transformationssprache ATL in die neu geschaffene Transformationssprache validiert. Mithilfe dieser Transformation wird weiterhin die Ausführungsgeschwindigkeit von Modelltransformationen mit der von ATL in einigen Modelltransformationen verglichen. Die Ergebnisse aus den Fallstudien zeigen gerade bei der Anwendung des Inkrementalisierungssystems auf Modelltransformationen deutliche Performance-Steigerungen im Vergleich zu herkömmlichen Modelltransformationen, aber auch gegenüber anderen inkrementellen Modelltransformationssprachen zeigt der vorgestellte Ansatz deutliche Beschleunigungen, teils um mehrere Größenordnungen. Insbesondere weisen die Fallstudien darauf hin, dass die benötigte Zeit für die Propagation von Änderungen des Eingabemodells in vielen Fällen unabhängig von der Größe des Eingabemodells ist. Gerade bei großen Eingabemodellen kommen so sehr hohe Beschleunigungen zustande. Die Inkrementalisierung einer Analyse ist dabei immer an das Metamodell gebunden. In der Praxis verwenden aber die meisten eingesetzten Metamodelle nur den eingeschränkten Modellierungsstandard EMOF, der teilweise zu einer unnötigen Komplexität des Metamodells führt und viele Analysen überhaupt erst notwendig macht. Eine Erweiterung des Modellierungsstandards kann hier einige Klassen von Modellanalysen komplett überflüssig machen und andere Analysen deutlich vereinfachen, sowie auch die Performance der entsprechenden Analyse beschleunigen

    Towards Zero-Overhead Disambiguation of Deep Priority Conflicts

    Full text link
    **Context** Context-free grammars are widely used for language prototyping and implementation. They allow formalizing the syntax of domain-specific or general-purpose programming languages concisely and declaratively. However, the natural and concise way of writing a context-free grammar is often ambiguous. Therefore, grammar formalisms support extensions in the form of *declarative disambiguation rules* to specify operator precedence and associativity, solving ambiguities that are caused by the subset of the grammar that corresponds to expressions. **Inquiry** Implementing support for declarative disambiguation within a parser typically comes with one or more of the following limitations in practice: a lack of parsing performance, or a lack of modularity (i.e., disallowing the composition of grammar fragments of potentially different languages). The latter subject is generally addressed by scannerless generalized parsers. We aim to equip scannerless generalized parsers with novel disambiguation methods that are inherently performant, without compromising the concerns of modularity and language composition. **Approach** In this paper, we present a novel low-overhead implementation technique for disambiguating deep associativity and priority conflicts in scannerless generalized parsers with lightweight data-dependency. **Knowledge** Ambiguities with respect to operator precedence and associativity arise from combining the various operators of a language. While *shallow conflicts* can be resolved efficiently by one-level tree patterns, *deep conflicts* require more elaborate techniques, because they can occur arbitrarily nested in a tree. Current state-of-the-art approaches to solving deep priority conflicts come with a severe performance overhead. **Grounding** We evaluated our new approach against state-of-the-art declarative disambiguation mechanisms. By parsing a corpus of popular open-source repositories written in Java and OCaml, we found that our approach yields speedups of up to 1.73x over a grammar rewriting technique when parsing programs with deep priority conflicts--with a modest overhead of 1-2 % when parsing programs without deep conflicts. **Importance** A recent empirical study shows that deep priority conflicts are indeed wide-spread in real-world programs. The study shows that in a corpus of popular OCaml projects on Github, up to 17 % of the source files contain deep priority conflicts. However, there is no solution in the literature that addresses efficient disambiguation of deep priority conflicts, with support for modular and composable syntax definitions
    corecore