9 research outputs found

    Causal Discovery from Temporal Data: An Overview and New Perspectives

    Full text link
    Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.Comment: 52 pages, 6 figure

    An improved model using convolutional sliding window-attention network for motor imagery EEG classification

    Get PDF
    IntroductionThe classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient richness of spatiotemporal feature extraction, learning ability, and dynamic selection ability.MethodsTo solve these problems, this work proposed a convolutional sliding window-attention network (CSANet) model composed of novel spatiotemporal convolution, sliding window, and two-stage attention blocks.ResultsThe model outperformed existing state-of-the-art (SOTA) models in within- and between-individual classification tasks on commonly used MI-EEG datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved by 4.22 and 2.02%, respectively.DiscussionThe experimental results also demonstrated that the proposed type token, sliding window, and local and global multi-head self-attention mechanisms can significantly improve the model's ability to construct, learn, and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and accurately identify electroencephalogram signals in the unilateral motor area. This work provided a novel and accurate classification model for MI-EEG brain-computer interface tasks and proposed a feasible neural rehabilitation assessment scheme based on the model, which could promote the further development and application of MI-EEG methods in neural rehabilitation

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF

    Computational Intelligence and Human- Computer Interaction: Modern Methods and Applications

    Get PDF
    The present book contains all of the articles that were accepted and published in the Special Issue of MDPI’s journal Mathematics titled "Computational Intelligence and Human–Computer Interaction: Modern Methods and Applications". This Special Issue covered a wide range of topics connected to the theory and application of different computational intelligence techniques to the domain of human–computer interaction, such as automatic speech recognition, speech processing and analysis, virtual reality, emotion-aware applications, digital storytelling, natural language processing, smart cars and devices, and online learning. We hope that this book will be interesting and useful for those working in various areas of artificial intelligence, human–computer interaction, and software engineering as well as for those who are interested in how these domains are connected in real-life situations

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome ParkfunktionalitĂ€t in einem realen VersuchstrĂ€ger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken ĂŒber eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren DatensĂ€tze dieser Annotationsebene und Radarspezifikation öffentlich verfĂŒgbar. Das ĂŒberwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstĂŒtzt. FĂŒr die kohĂ€rente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrĂŒckt. Ein speziell fĂŒr Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM fĂŒr beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen ParkfunktionalitĂ€t evaluiert. Im Durchschnitt ĂŒber 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher ManöverlĂ€nge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% ĂŒbertrifft. Die Kartengenauigkeit von verĂ€nderlichen, neukartierten Orten ĂŒber eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. FĂŒr das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Segmentation, Super-resolution and Fusion for Digital Mammogram Classification

    Get PDF
    Mammography is one of the most common and effective techniques used by radiologists for the early detection of breast cancer. Recently, computer-aided detection/diagnosis (CAD) has become a major research topic in medical imaging and has been widely applied in clinical situations. According to statics, early detection of cancer can reduce the mortality rates by 30% to 70%, therefore detection and diagnosis in the early stage are very important. CAD systems are designed primarily to assist radiologists in detecting and classifying abnormalities in medical scan images, but the main challenges hindering their wider deployment is the difficulty in achieving accuracy rates that help improve radiologists’ performance. The detection and diagnosis of breast cancer face two main issues: the accuracy of the CAD system, and the radiologists’ performance in reading and diagnosing mammograms. This thesis focused on the accuracy of CAD systems. In particular, we investigated two main steps of CAD systems; pre-processing (enhancement and segmentation), feature extraction and classification. Through this investigation, we make five main contributions to the field of automatic mammogram analysis. In automated mammogram analysis, image segmentation techniques are employed in breast boundary or region-of-interest (ROI) extraction. In most Medio-Lateral Oblique (MLO) views of mammograms, the pectoral muscle represents a predominant density region and it is important to detect and segment out this muscle region during pre-processing because it could be bias to the detection of breast cancer. An important reason for the breast border extraction is that it will limit the search-zone for abnormalities in the region of the breast without undue influence from the background of the mammogram. Therefore, we propose a new scheme for breast border extraction, artifact removal and removal of annotations, which are found in the background of mammograms. This was achieved using an local adaptive threshold that creates a binary mask for the images, followed by the use of morphological operations. Furthermore, an adaptive algorithm is proposed to detect and remove the pectoral muscle automatically. Feature extraction is another important step of any image-based pattern classification system. The performance of the corresponding classification depends very much on how well the extracted features represent the object of interest. We investigated a range of different texture feature sets such as Local Binary Pattern Histogram (LBPH), Histogram of Oriented Gradients (HOG) descriptor, and Gray Level Co-occurrence Matrix (GLCM). We propose the use of multi-scale features based on wavelet and local binary patterns for mammogram classification. We extract histograms of LBP codes from the original image as well as the wavelet sub-bands. Extracted features are combined into a single feature set. Experimental results show that our proposed method of combining LBPH features obtained from the original image and with LBPH features obtained from the wavelet domain increase the classification accuracy (sensitivity and specificity) when compared with LBPH extracted from the original image. The feature vector size could be large for some types of feature extraction schemes and they may contain redundant features that could have a negative effect on the performance of classification accuracy. Therefore, feature vector size reduction is needed to achieve higher accuracy as well as efficiency (processing and storage). We reduced the size of the features by applying principle component analysis (PCA) on the feature set and only chose a small number of eigen components to represent the features. Experimental results showed enhancement in the mammogram classification accuracy with a small set of features when compared with using original feature vector. Then we investigated and propose the use of the feature and decision fusion in mammogram classification. In feature-level fusion, two or more extracted feature sets of the same mammogram are concatenated into a single larger fused feature vector to represent the mammogram. Whereas in decision-level fusion, the results of individual classifiers based on distinct features extracted from the same mammogram are combined into a single decision. In this case the final decision is made by majority voting among the results of individual classifiers. Finally, we investigated the use of super resolution as a pre-processing step to enhance the mammograms prior to extracting features. From the preliminary experimental results we conclude that using enhanced mammograms have a positive effect on the performance of the system. Overall, our combination of proposals outperforms several existing schemes published in the literature

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore