379 research outputs found

    Corporate influence and the academic computer science discipline. [4: CMU]

    Get PDF
    Prosopographical work on the four major centers for computer research in the United States has now been conducted, resulting in big questions about the independence of, so called, computer science

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    ASAP : automatic semantics-aware analysis of network payloads

    Get PDF
    Automatic inspection of network payloads is a prerequisite for effective analysis of network communication. Security research has largely focused on network analysis using protocol specifications, for example for intrusion detection, fuzz testing and forensic analysis. The specification of a protocol alone, however, is often not sufficient for accurate analysis of communication, as it fails to reflect individual semantics of network applications. We propose a framework for semantics-aware analysis of network payloads which automaticylly extracts semantic components from recorded network traffic. Our method proceeds by mapping network payloads to a vector space and identifying semantic templates corresponding to base directions in the vector space. We demonstrate the efficacy of semantics-aware analysis in different security applications: automatic discovery of patterns in honeypot data, analysis of malware communication and network intrusion detection

    ASAP: Automatic semantics-aware analysis of network payloads

    Get PDF
    Automatic inspection of network payloads is a prerequisite for effective analysis of network communication. Security research has largely focused on network analysis using protocol specifications, for example for intrusion detection, fuzz testing and forensic analysis. The specification of a protocol alone, however, is often not sufficient for accurate analysis of communication, as it fails to reflect individual semantics of network applications. We propose a framework for semantics-aware analysis of network payloads which automaticylly extracts semantic components from recorded network traffic. Our method proceeds by mapping network payloads to a vector space and identifying semantic templates corresponding to base directions in the vector space. We demonstrate the efficacy of semantics-aware analysis in different security applications: automatic discovery of patterns in honeypot data, analysis of malware communication and network intrusion detection

    A New Stable Peer-to-Peer Protocol with Non-persistent Peers

    Full text link
    Recent studies have suggested that the stability of peer-to-peer networks may rely on persistent peers, who dwell on the network after they obtain the entire file. In the absence of such peers, one piece becomes extremely rare in the network, which leads to instability. Technological developments, however, are poised to reduce the incidence of persistent peers, giving rise to a need for a protocol that guarantees stability with non-persistent peers. We propose a novel peer-to-peer protocol, the group suppression protocol, to ensure the stability of peer-to-peer networks under the scenario that all the peers adopt non-persistent behavior. Using a suitable Lyapunov potential function, the group suppression protocol is proven to be stable when the file is broken into two pieces, and detailed experiments demonstrate the stability of the protocol for arbitrary number of pieces. We define and simulate a decentralized version of this protocol for practical applications. Straightforward incorporation of the group suppression protocol into BitTorrent while retaining most of BitTorrent's core mechanisms is also presented. Subsequent simulations show that under certain assumptions, BitTorrent with the official protocol cannot escape from the missing piece syndrome, but BitTorrent with group suppression does.Comment: There are only a couple of minor changes in this version. Simulation tool is specified this time. Some repetitive figures are remove

    Workload Interleaving with Performance Guarantees in Data Centers

    Get PDF
    In the era of global, large scale data centers residing in clouds, many applications and users share the same pool of resources for the purposes of reducing energy and operating costs, and of improving availability and reliability. Along with the above benefits, resource sharing also introduces performance challenges: when multiple workloads access the same resources concurrently, contention may occur and introduce delays in the performance of individual workloads. Providing performance isolation to individual workloads needs effective management methodologies. The challenges of deriving effective management methodologies lie in finding accurate, robust, compact metrics and models to drive algorithms that can meet different performance objectives while achieving efficient utilization of resources. This dissertation proposes a set of methodologies aiming at solving the challenging performance isolation problem in workload interleaving in data centers, focusing on both storage components and computing components. at the storage node level, we focus on methodologies for better interleaving user traffic with background workloads, such as tasks for improving reliability, availability, and power savings. More specifically, a scheduling policy for background workload based on the statistical characteristics of the system busy periods and a methodology that quantitatively estimates the performance impact of power savings are developed. at the storage cluster level, we consider methodologies on how to efficiently conduct work consolidation and schedule asynchronous updates without violating user performance targets. More specifically, we develop a framework that can estimate beforehand the benefits and overheads of each option in order to automate the process of reaching intelligent consolidation decisions while achieving faster eventual consistency. at the computing node level, we focus on improving workload interleaving at off-the-shelf servers as they are the basic building blocks of large-scale data centers. We develop priority scheduling middleware that employs different policies to schedule background tasks based on the instantaneous resource requirements of the high priority applications running on the server node. Finally, at the computing cluster level, we investigate popular computing frameworks for large-scale data intensive distributed processing, such as MapReduce and its Hadoop implementation. We develop a new Hadoop scheduler called DyScale to exploit capabilities offered by heterogeneous cores in order to achieve a variety of performance objectives

    Design and Optimisation of the FlyFast Front-end for Attribute-based Coordination

    Get PDF
    Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design of such systems requires scalable analysis tools and methods, which have necessarily to rely on some form of approximation of the system's actual behaviour. Promising techniques are those based on mean-field approximation. The FlyFast model-checker uses an on-the-fly algorithm for bounded PCTL model-checking of selected individual(s) in the context of very large populations whose global behaviour is approximated using deterministic limit mean-field techniques. Recently, a front-end for FlyFast has been proposed which provides a modelling language, PiFF in the sequel, for the Predicate-based Interaction for FlyFast. In this paper we present details of PiFF design and an approach to state-space reduction based on probabilistic bisimulation for inhomogeneous DTMCs.Comment: In Proceedings QAPL 2017, arXiv:1707.0366
    • …
    corecore