64 research outputs found

    Outdoor Augmented Reality: State of the Art and Issues

    Get PDF
    International audienceThe goal of an outdoor augmented reality system is to allow the human operator to move freely without restraint in its environment, to view and interact in real time with geo-referenced data via mobile wireless devices. This requires proposing new techniques for 3D localization, visualization and 3D interaction, adapted to working conditions in outdoor environment (brightness variation, features of displays used, etc.). This paper surveys recent advances in outdoor augmented reality. It resumes a large retrospective of the work carried out in this field, especially on methodological aspects (localization methods, generation of 3D models, visualization and interaction approaches), technological aspects (sensors, visualization devices and architecture software) and industrial aspects

    Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

    Get PDF
    Sliding a probe over a textured surface generates a rich collection of vibrations that one can easily use to create a mental model of the surface. Haptic virtual environments attempt to mimic these real interactions, but common haptic rendering techniques typically fail to reproduce the sensations that are encountered during texture exploration. Past approaches have focused on building a representation of textures using a priori ideas about surface properties. Instead, this paper describes a process of synthesizing probe-surface interactions from data recorded from real interactions. We explain how to apply the mathematical principles of Linear Predictive Coding (LPC) to develop a discrete transfer function that represents the acceleration response under specific probe-surface interaction conditions. We then use this predictive transfer function to generate unique acceleration signals of arbitrary length. In order to move between transfer functions from different probe-surface interaction conditions, we develop a method for interpolating the variables involved in the texture synthesis process. Finally, we compare the results of this process with real recorded acceleration signals, and we show that the two correlate strongly in the frequency domain

    Mobile three-dimensional city maps

    Get PDF
    Maps are visual representations of environments and the objects within, depicting their spatial relations. They are mainly used in navigation, where they act as external information sources, supporting observation and decision making processes. Map design, or the art-science of cartography, has led to simplification of the environment, where the naturally three-dimensional environment has been abstracted to a two-dimensional representation, populated with simple geometrical shapes and symbols. However, abstract representation requires a map reading ability. Modern technology has reached the level where maps can be expressed in digital form, having selectable, scalable, browsable and updatable content. Maps may no longer even be limited to two dimensions, nor to an abstract form. When a real world based virtual environment is created, a 3D map is born. Given a realistic representation, would the user no longer need to interpret the map, and be able to navigate in an inherently intuitive manner? To answer this question, one needs a mobile test platform. But can a 3D map, a resource hungry real virtual environment, exist on such resource limited devices? This dissertation approaches the technical challenges posed by mobile 3D maps in a constructive manner, identifying the problems, developing solutions and providing answers by creating a functional system. The case focuses on urban environments. First, optimization methods for rendering large, static 3D city models are researched and a solution provided by combining visibility culling, level-of-detail management and out-of-core rendering, suited for mobile 3D maps. Then, the potential of mobile networking is addressed, developing efficient and scalable methods for progressive content downloading and dynamic entity management. Finally, a 3D navigation interface is developed for mobile devices, and the research validated with measurements and field experiments. It is found that near realistic mobile 3D city maps can exist in current mobile phones, and the rendering rates are excellent in 3D hardware enabled devices. Such 3D maps can also be transferred and rendered on-the-fly sufficiently fast for navigation use over cellular networks. Real world entities such as pedestrians or public transportation can be tracked and presented in a scalable manner. Mobile 3D maps are useful for navigation, but their usability depends highly on interaction methods - the potentially intuitive representation does not imply, for example, faster navigation than with a professional 2D street map. In addition, the physical interface limits the usability

    Hybrid Rugosity Mesostructures (HRMs) for fast and accurate rendering of fine haptic detail

    Get PDF
    The haptic rendering of surface mesostructure (fine relief features) in dense triangle meshes requires special structures, equipment, and high sampling rates for detailed perception of rugged models. Low cost approaches render haptic texture at the expense of fidelity of perception. We propose a faster method for surface haptic rendering using image-based Hybrid Rugosity Mesostructures (HRMs), paired maps with per-face heightfield displacements and normal maps, which are layered on top of a much decimated mesh, effectively adding greater surface detail than actually present in the geometry. The haptic probe’s force response algorithm is modulated using the blended HRM coat to render dense surface features at much lower costs. The proposed method solves typical problems at edge crossings, concave foldings and texture transitions. To prove the wellness of the approach, a usability testbed framework was built to measure and compare experimental results of haptic rendering approaches in a common set of specially devised meshes, HRMs, and performance tests. Trial results of user testing evaluations show the goodness of the proposed HRM technique, rendering accurate 3D surface detail at high sampling rates, deriving useful modeling and perception thresholds for this technique.Peer ReviewedPostprint (published version

    A Survey on Recent Patents in Texture Synthesis

    Get PDF
    Abstract: Textures have been a research focus for many years in human perception, computer graphics and computer vision. Recently, research activities in this area emphasize on texture synthesis. Given one or more example textures, a texture synthesis algorithm generates a new one bearing the same visual characteristics. The synthesized texture can be made of arbitrary size specified by the user. It can be used in many fields such as computer animation, virtual reality, data compression, non-photorealistic rendering and so on. In this paper, the basic concepts of texture and the development process of texture synthesis techniques are introduced first. Then the recent key patents on texture synthesis schemes are reviewed. Finally, this paper points out future works in this area

    Text-Guided Neural Image Inpainting

    Full text link
    Image inpainting task requires filling the corrupted image with contents coherent with the context. This research field has achieved promising progress by using neural image inpainting methods. Nevertheless, there is still a critical challenge in guessing the missed content with only the context pixels. The goal of this paper is to fill the semantic information in corrupted images according to the provided descriptive text. Unique from existing text-guided image generation works, the inpainting models are required to compare the semantic content of the given text and the remaining part of the image, then find out the semantic content that should be filled for missing part. To fulfill such a task, we propose a novel inpainting model named Text-Guided Dual Attention Inpainting Network (TDANet). Firstly, a dual multimodal attention mechanism is designed to extract the explicit semantic information about the corrupted regions, which is done by comparing the descriptive text and complementary image areas through reciprocal attention. Secondly, an image-text matching loss is applied to maximize the semantic similarity of the generated image and the text. Experiments are conducted on two open datasets. Results show that the proposed TDANet model reaches new state-of-the-art on both quantitative and qualitative measures. Result analysis suggests that the generated images are consistent with the guidance text, enabling the generation of various results by providing different descriptions. Codes are available at https://github.com/idealwhite/TDANetComment: ACM MM'2020 (Oral). 9 pages, 4 tables, 7 figure

    Real-Time Markerless Tracking the Human Hands for 3D Interaction

    Get PDF
    This thesis presents methods for enabling suitable human computer interaction using only movements of the bare human hands in free space. This kind of interaction is natural and intuitive, particularly because actions familiar to our everyday life can be reflected. Furthermore, the input is contact-free which is of great advantage e.g. in medical applications due to hygiene factors. For enabling the translation of hand movements to control signals an automatic method for tracking the pose and/or posture of the hand is needed. In this context the simultaneous recognition of both hands is desirable to allow for more natural input. The first contribution of this thesis is a novel video-based method for real-time detection of the positions and orientations of both bare human hands in four different predefined postures, respectively. Based on such a system novel interaction interfaces can be developed. However, the design of such interfaces is a non-trivial task. Additionally, the development of novel interaction techniques is often mandatory in order to enable the design of efficient and easily operable interfaces. To this end, several novel interaction techniques are presented and investigated in this thesis, which solve existing problems and substantially improve the applicability of such a new device. These techniques are not restricted to this input instrument and can also be employed to improve the handling of other interaction devices. Finally, several new interaction interfaces are described and analyzed to demonstrate possible applications in specific interaction scenarios.Markerlose Verfolgung der menschlichen Hände in Echtzeit für 3D Interaktion In der vorliegenden Arbeit werden Verfahren dargestellt, die sinnvolle Mensch- Maschine-Interaktionen nur durch Bewegungen der bloßen Hände in freiem Raum ermöglichen. Solche "natürlichen" Interaktionen haben den besonderen Vorteil, dass alltägliche und vertraute Handlungen in die virtuelle Umgebung übertragen werden können. Außerdem werden auf diese Art berührungslose Eingaben ermöglicht, nützlich z.B. wegen hygienischer Aspekte im medizinischen Bereich. Um Handbewegungen in Steuersignale umsetzen zu können, ist zunächst ein automatisches Verfahren zur Erkennung der Lage und/oder der Art der mit der Hand gebildeten Geste notwendig. Dabei ist die gleichzeitige Erfassung beider Hände wünschenswert, um die Eingaben möglichst natürlich gestalten zu können. Der erste Beitrag dieser Arbeit besteht aus einer neuen videobasierten Methode zur unmittelbaren Erkennung der Positionen und Orientierungen beider Hände in jeweils vier verschiedenen, vordefinierten Gesten. Basierend auf einem solchen Verfahren können neuartige Interaktionsschnittstellen entwickelt werden. Allerdings ist die Ausgestaltung solcher Schnittstellen keinesfalls trivial. Im Gegenteil ist bei einer neuen Art der Interaktion meist sogar die Entwicklung neuer Interaktionstechniken erforderlich, damit überhaupt effiziente und gut bedienbare Schnittstellen konzipiert werden können. Aus diesem Grund wurden in dieser Arbeit einige neue Interaktionstechniken entwickelt und untersucht, die vorhandene Probleme beheben und die Anwendbarkeit eines solchen Eingabeinstruments für bestimmte Arten der Interaktion verbessern oder überhaupt erst ermöglichen. Diese Techniken sind nicht auf dieses Eingabeinstrument beschränkt und können durchaus auch die Handhabung anderer Eingabegeräte verbessern. Des Weiteren werden mehrere neue Interaktionsschnittstellen präsentiert, die den möglichen Einsatz bloßhändiger Interaktion in verschiedenen, typischen Anwendungsgebieten veranschaulichen

    A GPU-based architeture for supporting 3D interactions

    Get PDF
    Orientador: Wu Shin-TingTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Tendo como hipótese de que o controle preciso do movimento de um cursor constitui uma das técnicas elementares para as tarefas de manipulação direta 3D, esta tese propõe uma arquitetura de suporte a controles configuráveis dos movimentos de cursores em relação a modelos deformados em hardware gráfico. De forma integrada ao fluxo programável de visualização, a arquitetura calcula atributos de geometria diferencial discreta dos modelos processados, codificando tais atributos em pixels de buffers de renderização não visíveis. Mostramos, através de estudos de casos, que o uso desses atributos é suficiente para estabelecer uma correspondência entre o espaço discreto do modelo renderizado na tela e o espaço contínuo do modelo submetido ao fluxo de visualização. Isto permite que os cursores sejam posicionados de forma consistente com aquilo que o usuário está visualizando, proporcionando uma interação mais acurada. Testes de desempenho e robustez são conduzidos para validar a arquitetura. Uma biblioteca de funções que encapsula a arquitetura é apresentada, juntamente com exemplos de tarefas de manipulação direta 3D implementadas através delaAbstract: Based on the hypothesis that the precise control of the motion of a cursor constitutes one of the elementary techniques for 3D direct manipulation tools, this thesis proposes an architecture for supporting a configurable control of the motion of cursors with respect to models deformed on graphics hardware. Integrated with the actual programmable rendering pipeline, the architecture computes discrete differential geometric attributes of the processed models and encodes such attributes in pixels of off-screen render buffers. We show, through case studies, that these attributes are sufficient to establish a correspondence between the discrete space of the model rendered on the screen and the continuous space of the model submitted to the rendering pipeline. As a result, the cursors can be positioned consistently with what the user is actually viewing, thus providing a more accurate interaction. Efficiency and reliability tests are conducted to validate the architecture. A library of functions that encapsulates the architecture and examples of 3D direct manipulation tasks implemented with it are also presented.DoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Hierarchical N-Body problem on graphics processor unit

    Get PDF
    Galactic simulation is an important cosmological computation, and represents a classical N-body problem suitable for implementation on vector processors. Barnes-Hut algorithm is a hierarchical N-Body method used to simulate such galactic evolution systems. Stream processing architectures expose data locality and concurrency available in multimedia applications. On the other hand, there are numerous compute-intensive scientific or engineering applications that can potentially benefit from such computational and communication models. These applications are traditionally implemented on vector processors. Stream architecture based graphics processor units (GPUs) present a novel computational alternative for efficiently implementing such high-performance applications. Rendering on a stream architecture sustains high performance, while user-programmable modules allow implementing complex algorithms efficiently. GPUs have evolved over the years, from being fixed-function pipelines to user programmable processors. In this thesis, we focus on the implementation of Barnes-Hut algorithm on typical current-generation programmable GPUs. We exploit computation and communication requirements present in Barnes-Hut algorithm to expose their suitability for user-programmable GPUs. Our implementation of the Barnes-Hut algorithm is formulated as a fragment shader targeting the selected GPU. We discuss implementation details, design issues, results, and challenges encountered in programming the fragment shader

    Enhancing detailed haptic relief for real-time interaction

    Get PDF
    The present document exposes a different approach for haptic rendering, defined as the simulation of force interactions to reproduce the sensation of surface relief in dense models. Current research shows open issues in timely haptic interaction involving large meshes, with several problems affecting performance and fidelity, and without a dominant technique to treat these issues properly. Relying in pure geometric collisions when rendering highly dense mesh models (hundreds of thousands of triangles) sensibly degrades haptic rates due to the sheer number of collisions that must be tracked between the mesh's faces and a haptic probe. Several bottlenecks were identified in order to enhance haptic performance: software architecture and data structures, collision detection, and accurate rendering of surface relief. To account for overall software architecture and data structures, it was derived a complete component framework for transforming standalone VR applications into full-fledged multi-threaded Collaborative Virtual Reality Environments (CVREs), after characterizing existing implementations into a feature-rich superset. Enhancements include: a scalable arbitrated peer-to-peer topology for scene sharing; multi-threaded components for graphics rendering, user interaction and network communications; a collaborative user interface model for session handling; and interchangeable user roles with multi-camera perspectives, avatar awareness and shared annotations. We validate the framework by converting the existing ALICE VR Navigator into a complete CVRE, showing good performance in collaborative manipulation of complex models. To specifically address collision detection computation, we derive a conformal algebra treatment for collisions among points, segments, areas, and volumes, based on collision detection in conformal R{4,1} (5D) space, and implemented in GPU for faster parallel queries. Results show orders of magnitude time reductions in collisions computations, allowing interactive rates. Finally, the main core of the research is the haptic rendering of surface mesostructure in large meshes. Initially, a method for surface haptic rendering was proposed, using image-based Hybrid Rugosity Mesostructures (HRMs) of per-face heightfield displacements and normalmaps layered on top of a simpler mesh, adding greater surface detail than actually present. Haptic perception is achieved modulating the haptic probe's force response using the HRM coat. A usability testbed framework was built to measure experimental performance with a common set tests, meshes and HRMs. Trial results show the goodness of the proposed technique, rendering accurate 3D surface detail at high sampling rates. This local per-face method is extended into a fast global approach for haptic rendering, building a mesostructure-based atlas of depth/normal textures (HyRMA), computed out of surface differences of the same mesh object at two different resolutions: original and simplified. For each triangle in the simplified mesh, an irregular prism is considered defined by the triangle's vertices and their normals. This prism completely covers the original mesh relief over the triangle. Depth distances and surfaces normals within each prism are warped from object volume space to orthogonal tangent space, by means of a novel and fast method for computing barycentric coordinates at the prism, and storing normals and relief in a sorted atlas. Haptic rendering is effected by colliding the probe against the atlas, and effecting a modulated force response at the haptic probe. The method is validated numerically, statistically and perceptually in user testing controlled trials, achieving accurate haptic sensation of large meshes' fine features at interactive rendering rates, with some minute loss of mesostructure detail.En aquesta tesi es presenta un novedós enfocament per a la percepció hàptica del relleu de models virtuals complexes mitjançant la simulació de les forces d'interacció entre la superfície i un element de contacte. La proposta contribueix a l'estat de l'art de la recerca en aquesta àrea incrementant l'eficiència i la fidelitat de la interacció hàptica amb grans malles de triangles. La detecció de col·lisions amb malles denses (centenars de milers de triangles) limita la velocitat de resposta hàptica degut al gran nombre d'avaluacions d'intersecció cara-dispositiu hàptic que s'han de realitzar. Es van identificar diferents alternatives per a incrementar el rendiment hàptic: arquitectures de software i estructures de dades específiques, algorismes de detecció de col·lisions i reproducció hàptica de relleu superficial. En aquesta tesi es presenten contribucions en alguns d'aquests aspectes. S'ha proposat una estructura completa de components per a transformar aplicacions de Realitat Virtual en Ambients Col·laboratius de Realitat Virtual (CRVEs) multithread en xarxa. L'arquitectura proposada inclou: una topologia escalable punt a punt per a compartir escenes; components multithread per a visualització gràfica, interacció amb usuaris i comunicació en xarxa; un model d'interfície d'usuari col·laboratiu per a la gestió de sessions; i rols intercanviables de l'usuari amb perspectives de múltiples càmeres, presència d'avatars i anotacions compartides. L'estructura s'ha validat convertint el navegador ALICE en un CVRE completament funcional, mostrant un bon rendiment en la manipulació col·laborativa de models complexes. Per a incrementar l'eficiència del càlcul de col·lisions, s'ha proposat un algorisme que treballa en un espai conforme R{4,1} (5D) que permet detectar col·lisions entre punts, segments, triangles i volums. Aquest algorisme s'ha implementat en GPU per obtenir una execució paral·lela més ràpida. Els resultats mostren reduccions en el temps de càlcul de col·lisions permetent interactivitat. Per a la percepció hàptica de malles complexes que modelen objectes rugosos, s'han proposat diferents algorismes i estructures de dades. Les denominades Mesoestructures Híbrides de Rugositat (HRM) permeten substituir els detalls geomètrics d'una cara (rugositats) per dues textures: de normals i d'alçades. La percepció hàptica s'aconsegueix modulant la força de resposta entre el dispositiu hàptic i la HRM. Els tests per avaluar experimentalment l'eficiència del càlcul de col·lisions i la percepció hàptica utilitzant HRM respecte a modelar les rugositats amb geometria, van mostrar que la tècnica proposada va ser encertada, permetent percebre detalls 3D correctes a altes tases de mostreig. El mètode es va estendre per a representar rugositats d'objectes. Es proposa substituir l'objecte per un model simplificat i un atles de mesoestructures en el que s'usen textures de normals i de relleus (HyRMA). Aquest atles s'obté a partir de la diferència en el detall de la superfície entre dos malles del mateix objecte: l'original i la simplificada. A partir d'un triangle de la malla simplificada es construeix un prisma, definit pels vèrtexs del triangle i les seves normals, que engloba el relleu de la malla original sobre el triangle. Les alçades i normals dins del prisma es transformen des de l'espai de volum a l'espai ortogonal tangent, amb mètode novedós i eficient que calcula les coordenades baricèntriques relatives al prisma, per a guardar el mapa de textures transformat en un atles ordenat. La percepció hàptica s'assoleix detectant les col·lisions entre el dispositiu hàptic i l'atles, i modulant la força de resposta d'acord al resultat de la col·lisió. El mètode s'ha validat numèricament, estadística i perceptual en tests amb usuaris, aconseguint una correcta i interactiva sensació tàctil dels objectes simulats mitjançant la mesoestructura de les mallesEn esta tesis se presenta un enfoque novedoso para la percepción háptica del relieve de modelos virtuales complejos mediante la simulación de las fuerzas de interacción entre la superficie y un elemento de contacto. La propuesta contribuye al estado del arte de investigación en este área incrementando la eficiencia y fidelidad de interacción háptica con grandes mallas de triángulos. La detección de colisiones con mallas geométricas densas (cientos de miles de triángulos) limita la velocidad de respuesta háptica debido al elevado número de evaluaciones de intersección cara-dispositivo háptico que deben realizarse. Se identificaron diferentes alternativas para incrementar el rendimiento háptico: arquitecturas de software y estructuras de datos específicas, algoritmos de detección de colisiones y reproducción háptica de relieve superficial. En esta tesis se presentan contribuciones en algunos de estos aspectos. Se ha propuesto una estructura completa de componentes para transformar aplicaciones aisladas de Realidad Virtual en Ambientes Colaborativos de Realidad Virtual (CRVEs) multithread en red. La arquitectura propuesta incluye: una topología escalable punto a punto para compartir escenas; componentes multithread para visualización gráfica, interacción con usuarios y comunicación en red; un modelo de interfaz de usuario colaborativo para la gestión de sesiones; y roles intercambiables del usuario con perspectivas de múltiples cámaras, presencia de avatares y anotaciones compartidas. La estructura se ha validado convirtiendo el navegador ALICE en un CVRE completamente funcional, mostrando un buen rendimiento en la manipulación colaborativa de modelos complejos. Para incrementar la eficiencia del cálculo de colisiones, se ha propuesto un algoritmo que trabaja en un espacio conforme R4,1 (5D) que permite detectar colisiones entre puntos, segmentos, triángulos y volúmenes. Este algoritmo se ha implementado en GPU a efectos de obtener una ejecución paralelamás rápida. Los resultadosmuestran reducciones en el tiempo de cálculo de colisiones permitiendo respuesta interactiva. Para la percepción háptica de mallas complejas que modelan objetos rugosos, se han propuesto diferentes algoritmos y estructuras de datos. Las denominadasMesoestructuras Híbridas de Rugosidad (HRM) permiten substituir los detalles geométricos de una cara (rugosidades) por una textura de normales y otra de alturas. La percepción háptica se consigue modulando la fuerza de respuesta entre el dispositivo háptico y la HRM. Los tests realizados para evaluar experimentalmente la eficiencia del cálculo de colisiones y la percepción háptica utilizando HRM respecto a modelar las rugosidades con geometría, mostraron que la técnica propuesta fue acertada, permitiendo percibir detalles 3D correctos a altas tasas de muestreo. Este método anterior es extendido a un procedimiento global para representar rugosidades de objetos. Para hacerlo se propone sustituir el objeto por un modelo simplificado y un atlas de mesostructuras usando texturas de normales y relieves (HyRMA). Este atlas se obtiene de la diferencia en detalle de superficie entre dos mallas del mismo objeto: la original y la simplificada. A partir de un triángulo de la malla simplificada se construye un prisma definido por los vértices del triángulo a lo largo de sus normales, que engloba completamente el relieve de la malla original sobre este triángulo. Las alturas y normales dentro de cada prisma se transforman del espacio de volumen al espacio ortoganal tangente, usando un método novedoso y eficiente que calcula las coordenadas baricéntricas relativas a cada prisma para guardar el mapa de texturas transformado en un atlas ordenado. La percepción háptica se consigue detectando directamente las colisiones entre el dispositivo háptico y el atlas, y modulando la fuerza de respuesta de acuerdo al resultado de la colisión. El procedmiento se ha validado numérica, estadística y perceptualmente en ensayos con usuarios, consiguiendo a tasas interactivas la correcta sensación táctil de los objetos simulados mediante la mesoestructura de las mallas, con alguna pérdida muy puntual de detall
    corecore