6 research outputs found

    On Localization Issues of Mobile Devices

    Get PDF
    Mobile devices, such as sensor nodes, smartphones and smartwatches, are now widely used in many applications. Localization is a highly important topic in wireless networks as well as in many Internet of Things applications. In this thesis, four novel localization schemes of mobile devices are introduced to improve the localization performance in three different areas, like the outdoor, indoor and underwater environments. Firstly, in the outdoor environment, many current localization algorithms are based on the Sequential Monte MCL, the accuracy of which is bounded by the radio range. High computational complexity in the sampling step is another issue of these approaches. Tri-MCL is presented, which significantly improves on the accuracy of the Monte Carlo Localization algorithm. To do this, three different distance measurement algorithms based on range-free approaches are leveraged. Using these, the distances between unknown nodes and anchor nodes are estimated to perform more fine-grained filtering of the particles as well as for weighting the particles in the final estimation step of the algorithm. Simulation results illustrate that the proposed algorithm achieves better accuracy than the MCL and SA-MCL algorithms. Furthermore, it also exhibits high efficiency in the sampling step. Then, in the GPS-denied indoor environment, Twi-Adaboost is proposed, which is a collaborative indoor localization algorithm with the fusion of internal sensors such as the accelerometer, gyroscope and magnetometer from multiple devices. Specifically, the datasets are collected firstly by one person wearing two devices simultaneously: a smartphone and a smartwatch, each collecting multivariate data represented by their internal parameters in a real environment. Then, the datasets from these two devices are evaluated for their strengths and weaknesses in recognizing the indoor position. Based on that, the Twi-AdaBoost algorithm, an interactive ensemble learning method, is proposed to improve the indoor localization accuracy by fusing the co-occurrence information. The performance of the proposed algorithm is assessed on a real-world dataset. The experiment results demonstrate that Twi-AdaBoost achieves a localization error about 0.39 m on average with a low deployment cost, which outperforms the state-of-the-art indoor localization algorithms. Lastly, the characteristics of mobile UWSNs, such as low communication bandwidth, large propagation delay, and sparse deployment, pose challenging issues for successful localization of sensor nodes. In addition, sensor nodes in UWSNs are usually powered by batteries whose replacements introduces high cost and complexity. Thus, the critical problem in UWSNs is to enable each sensor node to find enough anchor nodes in order to localize itself, with minimum energy costs. An Energy-Efficient Localization Algorithm (EELA) is proposed to analyze the decentralized interactions among sensor nodes and anchor nodes. A Single-Leader-Multi-Follower Stackelberg game is utilized to formulate the topology control problem of sensor nodes and anchor nodes by exploiting their available communication opportunities. In this game, the sensor node acts as a leader taking into account factors such as `two-hop' anchor nodes and energy consumption, while anchor nodes act as multiple followers, considering their ability to localize sensor nodes and their energy consumption. I prove that both players select best responses and reach a socially optimal Stackelberg Nash Equilibrium. Simulation results demonstrate that the proposed EELA improves the performance of localization in UWSNs significantly, and in particular the energy cost of sensor nodes. Compared to the baseline schemes, the energy consumption per node is about 48% lower in EELA, while providing a desirable localization coverage, under reasonable error and delay. Based on the EELA scheme, an Adaptive Energy Efficient Localization Algorithm using the Fuzzy game theoretic method (Adaptive EELA) is proposed to solve the environment adaptation problem of EELA. The adaptive neuro-fuzzy method is used as the utility function of the Single-Leader-Multi-Follower Stackelberg game to model the dynamical changes in UWSNs. The proposed Adaptive EELA scheme is able to automatically learn in the offline phase, which is required only once. Then, in the online phase, it can adapt to the environmental changes, such as the densities of nodes or topologies of nodes. Extensive numerical evaluations are conducted under different network topologies and different network node densities. The simulation results demonstrate that the proposed Adaptive EELA scheme achieves about 35% and 66% energy reduction per node on average comparing the state-of-the-art approaches, such as EELA and OLTC, while providing a desirable localization coverage, localization error and localization delay

    Collision-Free Transmissions in an IoT Monitoring Application Based on LoRaWAN

    Get PDF
    International audienceWith the Internet of Things (IoT), the number of monitoring applications deployed is considerably increasing, whatever the field considered: smart city, smart agriculture, environment monitoring, air pollution monitoring, to name a few. The LoRaWAN (Long Range Wide Area Network)architecture with its long range communication, its robustness to interference and its reduced energy consumption is an excellent candidate to support such applications. However, if the number of end devices is high, the reliability of LoRaWAN, measured by the Packet Delivery Ratio (PDR), becomes unacceptable due to an excessive number of collisions. In this paper, we propose two different families of solutions ensuring collision-free transmissions. The first family is TDMA (Time-Division Multiple Access)-based. All clusters transmit in sequence and up to six end devices with different spreading factors belonging to the same cluster are allowed to transmit in parallel. The second family is FDMA (Frequency Divsion Multiple Access)-based. All clusters transmit in parallel, each cluster on its own frequency. Within each cluster, all end devices transmit in sequence. Their performance are compared in terms of PDR, energy consumption by end device and maximum number of end devices supported. Simulation results corroborate the theoretical results and show the high efficiency of the solutions proposed

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management
    corecore