8 research outputs found

    The decision problem for a three-sorted fragment of set theory with restricted quantification and finite enumerations

    Get PDF
    We solve the satisfiability problem for a three-sorted fragment of set theory (denoted 3LQST0R3LQST_0^R), which admits a restricted form of quantification over individual and set variables and the finite enumeration operator {-,-,,-}\{\text{-}, \text{-}, \ldots, \text{-}\} over individual variables, by showing that it enjoys a small model property, i.e., any satisfiable formula ψ\psi of 3LQST0R3LQST_0^R has a finite model whose size depends solely on the length of ψ\psi itself. Several set-theoretic constructs are expressible by 3LQST0R3LQST_0^R-formulae, such as some variants of the power set operator and the unordered Cartesian product. In particular, concerning the unordered Cartesian product, we show that when finite enumerations are used to represent the construct, the resulting formula is exponentially shorter than the one that can be constructed without resorting to such terms

    A sparse resultant based method for efficient minimal solvers

    Full text link
    Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e. solving minimal problems in a RANSAC framework. Minimal problems often result in complex systems of polynomial equations. Many state-of-the-art efficient polynomial solvers to these problems are based on Gr\"obner bases and the action-matrix method that has been automatized and highly optimized in recent years. In this paper we study an alternative algebraic method for solving systems of polynomial equations, i.e., the sparse resultant-based method and propose a novel approach to convert the resultant constraint to an eigenvalue problem. This technique can significantly improve the efficiency and stability of existing resultant-based solvers. We applied our new resultant-based method to a large variety of computer vision problems and show that for most of the considered problems, the new method leads to solvers that are the same size as the the best available Gr\"obner basis solvers and of similar accuracy. For some problems the new sparse-resultant based method leads to even smaller and more stable solvers than the state-of-the-art Gr\"obner basis solvers. Our new method can be fully automatized and incorporated into existing tools for automatic generation of efficient polynomial solvers and as such it represents a competitive alternative to popular Gr\"obner basis methods for minimal problems in computer vision

    Sparse resultant based minimal solvers in computer vision and their connection with the action matrix

    Full text link
    Many computer vision applications require robust and efficient estimation of camera geometry from a minimal number of input data measurements, i.e., solving minimal problems in a RANSAC framework. Minimal problems are usually formulated as complex systems of sparse polynomials. The systems usually are overdetermined and consist of polynomials with algebraically constrained coefficients. Most state-of-the-art efficient polynomial solvers are based on the action matrix method that has been automated and highly optimized in recent years. On the other hand, the alternative theory of sparse resultants and Newton polytopes has been less successful for generating efficient solvers, primarily because the polytopes do not respect the constraints on the coefficients. Therefore, in this paper, we propose a simple iterative scheme to test various subsets of the Newton polytopes and search for the most efficient solver. Moreover, we propose to use an extra polynomial with a special form to further improve the solver efficiency via a Schur complement computation. We show that for some camera geometry problems our extra polynomial-based method leads to smaller and more stable solvers than the state-of-the-art Grobner basis-based solvers. The proposed method can be fully automated and incorporated into existing tools for automatic generation of efficient polynomial solvers. It provides a competitive alternative to popular Grobner basis-based methods for minimal problems in computer vision. We also study the conditions under which the minimal solvers generated by the state-of-the-art action matrix-based methods and the proposed extra polynomial resultant-based method, are equivalent. Specifically we consider a step-by-step comparison between the approaches based on the action matrix and the sparse resultant, followed by a set of substitutions, which would lead to equivalent minimal solvers.Comment: arXiv admin note: text overlap with arXiv:1912.1026

    Aeronautical engineering: A continuing bibliography with indexes (supplement 291)

    Get PDF
    This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 284)

    Get PDF
    This bibliography lists 974 reports, articles, and other documents introduced into the NASA scientific and technical information system in Oct. 1992. The coverage includes documents on design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles

    Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 244)

    Get PDF
    This bibliography lists 465 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore