322 research outputs found

    A Survey of Green Networking Research

    Full text link
    Reduction of unnecessary energy consumption is becoming a major concern in wired networking, because of the potential economical benefits and of its expected environmental impact. These issues, usually referred to as "green networking", relate to embedding energy-awareness in the design, in the devices and in the protocols of networks. In this work, we first formulate a more precise definition of the "green" attribute. We furthermore identify a few paradigms that are the key enablers of energy-aware networking research. We then overview the current state of the art and provide a taxonomy of the relevant work, with a special focus on wired networking. At a high level, we identify four branches of green networking research that stem from different observations on the root causes of energy waste, namely (i) Adaptive Link Rate, (ii) Interface proxying, (iii) Energy-aware infrastructures and (iv) Energy-aware applications. In this work, we do not only explore specific proposals pertaining to each of the above branches, but also offer a perspective for research.Comment: Index Terms: Green Networking; Wired Networks; Adaptive Link Rate; Interface Proxying; Energy-aware Infrastructures; Energy-aware Applications. 18 pages, 6 figures, 2 table

    On Resource Pooling and Separation for LRU Caching

    Full text link
    Caching systems using the Least Recently Used (LRU) principle have now become ubiquitous. A fundamental question for these systems is whether the cache space should be pooled together or divided to serve multiple flows of data item requests in order to minimize the miss probabilities. In this paper, we show that there is no straight yes or no answer to this question, depending on complex combinations of critical factors, including, e.g., request rates, overlapped data items across different request flows, data item popularities and their sizes. Specifically, we characterize the asymptotic miss probabilities for multiple competing request flows under resource pooling and separation for LRU caching when the cache size is large. Analytically, we show that it is asymptotically optimal to jointly serve multiple flows if their data item sizes and popularity distributions are similar and their arrival rates do not differ significantly; the self-organizing property of LRU caching automatically optimizes the resource allocation among them asymptotically. Otherwise, separating these flows could be better, e.g., when data sizes vary significantly. We also quantify critical points beyond which resource pooling is better than separation for each of the flows when the overlapped data items exceed certain levels. Technically, we generalize existing results on the asymptotic miss probability of LRU caching for a broad class of heavy-tailed distributions and extend them to multiple competing flows with varying data item sizes, which also validates the Che approximation under certain conditions. These results provide new insights on improving the performance of caching systems

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Corporate influence and the academic computer science discipline. [4: CMU]

    Get PDF
    Prosopographical work on the four major centers for computer research in the United States has now been conducted, resulting in big questions about the independence of, so called, computer science

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Enabling fair pricing on HPC systems with node sharing

    Full text link
    Abstract not provide

    Network overload avoidance by traffic engineering and content caching

    Get PDF
    The Internet traffic volume continues to grow at a great rate, now driven by video and TV distribution. For network operators it is important to avoid congestion in the network, and to meet service level agreements with their customers. This thesis presents work on two methods operators can use to reduce links loads in their networks: traffic engineering and content caching. This thesis studies access patterns for TV and video and the potential for caching. The investigation is done both using simulation and by analysis of logs from a large TV-on-Demand system over four months. The results show that there is a small set of programs that account for a large fraction of the requests and that a comparatively small local cache can be used to significantly reduce the peak link loads during prime time. The investigation also demonstrates how the popularity of programs changes over time and shows that the access pattern in a TV-on-Demand system very much depends on the content type. For traffic engineering the objective is to avoid congestion in the network and to make better use of available resources by adapting the routing to the current traffic situation. The main challenge for traffic engineering in IP networks is to cope with the dynamics of Internet traffic demands. This thesis proposes L-balanced routings that route the traffic on the shortest paths possible but make sure that no link is utilised to more than a given level L. L-balanced routing gives efficient routing of traffic and controlled spare capacity to handle unpredictable changes in traffic. We present an L-balanced routing algorithm and a heuristic search method for finding L-balanced weight settings for the legacy routing protocols OSPF and IS-IS. We show that the search and the resulting weight settings work well in real network scenarios
    corecore