60 research outputs found

    MPTCP Robustness Against Large-Scale Man-in-the-Middle Attacks

    Get PDF
    International audienceMultipath communications at the Internet scale have been a myth for a long time, with no actual protocol being deployed at large scale. Recently, the Multipath Transmission Control Protocol (MPTCP) extension was standardized and is undergoing rapid adoption in many different use-cases, from mobile to fixed access networks, from data-centers to core networks. Among its major benefits-i.e., reliability thanks to backup path rerouting, through-put increase thanks to link aggregation, and confidentiality being more difficult to intercept a full connection-the latter has attracted lower attention. How effective would be to use MPTCP, or an equivalent multipath transport layer protocol, to exploit multiple Internet-scale paths and decrease the probability of Man-in-the-Middle (MITM) attacks is a question which we try to answer. By analyzing the Autonomous System (AS) level graph, we identify which countries and regions show a higher level of robustness against MITM AS-level attacks, for example due to core cable tapping or route hijacking practices.

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS

    Byzantine state machine replication for the masses

    Get PDF
    Tese de doutoramento, Informática (Ciência da Computação), Universidade de Lisboa, Faculdade de Ciências, 2018The state machine replication technique is a popular approach for building Byzantine fault-tolerant services. However, despite the widespread adoption of this paradigm for crash fault-tolerant systems, there are still few examples of this paradigm for real Byzantine fault-tolerant systems. Our view of this situation is that there is a lack of robust implementations of Byzantine fault-tolerant state machine replication middleware, and that the performance penalty is too high, specially for geo-replication. These hindrances are tightly coupled to the distributed protocols used for enforcing such resilience. This thesis has the objective of finding methodologies for enhancing robustness and performance of state machine replication systems. The first contribution is Mod-SMaRt, a modular protocol that preserves optimal latency in terms of the communications steps exchanged among processes. By being a modular protocol, it becomes simpler to validate and implement, thus resulting in greater robustness; by also preserving optimal message-exchanges among processes, the protocol is capable of delivering desirable performance. The second contribution is concerned with implementing Mod-SMaRt into BFTSMART, a reliable and high-performance codebase that was maintained and improved over the entire course of the PhD that offers multicore-awareness, reconfiguration support, and a flexible API. The third contribution presents WHEAT, a protocol derived from Mod-SMaRt that uses optimizations shown to be effective in reducing latency via a practical evaluation conducted in a geo distributed environment. We additionally conducted an evaluation of both BFT-SMART and WHEAT applied to a relational database middleware and an ordering service for a permissioned blockchain platform. These evaluations revealed encouraging results for both systems and validated our work conducted in the geo-distributed context.A técnica de replicação máquina de estados é um paradigma popular usado em vários sistemas distribuídos modernos. No entanto, apesar da adoção deste paradigma em sistemas reais tolerantes a faltas por paragem, ainda existem poucos exemplos de sistemas reais tolerantes a faltas bizantinas. Segundo a nossa experiência nesta área de investigação, isto deve-se ao fato de existirem poucas concretizações robustas para replicação máquina de estados tolerante a faltas bizantinas, assim como uma perda de desempenho demasiado elevada, especialmente em ambientes geo-replicados. A razão fundamental para a existência destes obstáculos vem dos protocolos distribuídos necessários para assegurar este tipo de resiliência. Esta tese tem como objetivo explorar metodologias para a robustez e eficiência da replicação máquina de estados. A primeira contribuição da tese é o algoritmo Mod-SMaRt, um protocolo modular que preserva latência ótima em termos de passos de comunicação executados pelos processos. Sendo um protocolo modular, torna-se mais simples de validar e concretizar, o que resulta em maior robustez; ao preservar troca de mensagens ótima entre processos, também é capaz de entregar um desempenho desejável. A segunda contribuição consiste em concretizar o protocolo Mod SMaRt na ferramenta BFT-SMART, uma biblioteca fiável de alto desempenho, mantida e melhorada ao longo de todo o período correspondente ao doutoramento, capaz de suportar arquiteturas multi-núcleo, reconfiguração do grupo de réplicas, e uma API de programação flexível. A terceira contribuição consiste em um protocolo derivado do Mod-SMaRt designado WHEAT, que usa otimizações que demostraram serem eficientes na redução da latência segundo uma avaliação prática em ambiente geo-replicado. Adicionalmente, foram também realizadas avaliações de ambos os protocolos quando aplicados num middleware para base de dados relacionais, e num serviço de ordenação para uma plataforma blockchain. Ambas as avaliações revelam resultados encorajadores para ambos os sistemas e validam o trabalho realizado em contexto geo-distribuído.Projeto IRCoC (PTDC/EEI-SCR/6970/2014); Comissão Europeia, FP7 (Seventh Framework Programme for Research and Technological Development), projetos FP7/2007-2013, ICT-25724

    Runtime reconfiguration of physical and virtual pervasive systems

    Full text link
    Today, almost everyone comes in contact with smart environments during their everyday’s life. Environments such as smart homes, smart offices, or pervasive classrooms contain a plethora of heterogeneous connected devices and provide diverse services to users. The main goal of such smart environments is to support users during their daily chores and simplify the interaction with the technology. Pervasive Middlewares can be used for a seamless communication between all available devices and by integrating them directly into the environment. Only a few years ago, a user entering a meeting room had to set up, for example, the projector and connect a computer manually or teachers had to distribute files via mail. With the rise of smart environments these tasks can be automated by the system, e.g., upon entering a room, the smartphone automatically connects to a display and the presentation starts. Besides all the advantages of smart environments, they also bring up two major problems. First, while the built-in automatic adaptation of many smart environments is often able to adjust the system in a helpful way, there are situations where the user has something different in mind. In such cases, it can be challenging for unexperienced users to configure the system to their needs. Second, while users are getting increasingly mobile, they still want to use the systems they are accustomed to. As an example, an employee on a business trip wants to join a meeting taking place in a smart meeting room. Thus, smart environments need to be accessible remotely and should provide all users with the same functionalities and user experience. For these reasons, this thesis presents the PerFlow system consisting of three parts. First, the PerFlow Middleware which allows the reconfiguration of a pervasive system during runtime. Second, with the PerFlow Tool unexperi- enced end users are able to create new configurations without having previous knowledge in programming distributed systems. Therefore, a specialized visual scripting language is designed, which allows the creation of rules for the commu- nication between different devices. Third, to offer remote participants the same user experience, the PerFlow Virtual Extension allows the implementation of pervasive applications for virtual environments. After introducing the design for the PerFlow system, the implementation details and an evaluation of the developed prototype is outlined. The evaluation discusses the usability of the system in a real world scenario and the performance implications of the middle- ware evaluated in our own pervasive learning environment, the PerLE testbed. Further, a two stage user study is introduced to analyze the ease of use and the usefulness of the visual scripting tool

    A mixed-method empirical study of Function-as-a-Service software development in industrial practice

    Get PDF
    Function-as-a-Service (FaaS) describes cloud computing services that make infrastructure components transparent to application developers, thus falling in the larger group of “serverless” computing mod- els. When using FaaS offerings, such as AWS Lambda, developers provide atomic and short-running code for their functions, and FaaS providers execute and horizontally scale them on-demand. Currently, there is nosystematic research on how developers use serverless, what types of applications lend themselves to this model, or what architectural styles and practices FaaS-based applications are based on. We present results from a mixed-method study, combining interviews with practitioners who develop applications and systems that use FaaS, a systematic analysis of grey literature, and a Web-based survey. We find that successfully adopting FaaS requires a different mental model, where systems are primarily constructed by composing pre-existing services, with FaaS often acting as the “glue” that brings these services to- gether. Tooling availability and maturity, especially related to testing and deployment, remains a major difficulty. Further, we find that current FaaS systems lack systematic support for function reuse, and ab- stractions and programming models for building non-trivial FaaS applications are limited. We conclude with a discussion of implications for FaaS providers, software developers, and researchers

    Internet of Things: Architectures, Protocols, and Applications

    Get PDF
    corecore