25 research outputs found

    Streaming Spectral Processing with Consumer-level Graphics Processing Units

    Get PDF
    This paper describes the implementation of a streaming spectral processing system for realtime audio in a consumer-level onboard GPU (Graphics Processing Unit) attached to an off-the-shelf laptop computer. It explores the implementation of four processes: standard phase vocoder analysis and synthesis, additive synthesis and the sliding phase vocoder. These were developed under the CUDA development environment as plugins for the Csound 6 audio programming language. Following a detailed exposition of the GPU code, results of performance tests are discussed for each algorithm. They demonstrate that such a system is capable of realtime audio, even under the restrictions imposed by a limited GPU capability

    Streaming Spectral Processing with Consumer-level Graphics Processing Units

    Get PDF
    This paper describes the implementation of a streaming spectral processing system for realtime audio in a consumer-level onboard GPU (Graphics Processing Unit) attached to an off-the-shelf laptop computer. It explores the implementation of four processes: standard phase vocoder analysis and synthesis, additive synthesis and the sliding phase vocoder. These were developed under the CUDA development environment as plugins for the Csound 6 audio programming language. Following a detailed exposition of the GPU code, results of performance tests are discussed for each algorithm. They demonstrate that such a system is capable of realtime audio, even under the restrictions imposed by a limited GPU capability

    An Energy Conserving Finite Difference Scheme for the Simulation of Collisions in Snare Drums

    Get PDF
    In this paper, a physics-based model for a snare drum will be dis-cussed, along with its finite difference simulation. The interac-tions between a mallet and the membrane and between the snares and the membrane will be described as perfectly elastic collisions. A novel numerical scheme for the implementation of collisions will be presented, which allows a complete energy analysis for the whole system. Viscothermal losses will be added to the equation for the 3D wave propagation. Results from simulations and sound examples will be presented. 1

    Differentiable Grey-box Modelling of Phaser Effects using Frame-based Spectral Processing

    Full text link
    Machine learning approaches to modelling analog audio effects have seen intensive investigation in recent years, particularly in the context of non-linear time-invariant effects such as guitar amplifiers. For modulation effects such as phasers, however, new challenges emerge due to the presence of the low-frequency oscillator which controls the slowly time-varying nature of the effect. Existing approaches have either required foreknowledge of this control signal, or have been non-causal in implementation. This work presents a differentiable digital signal processing approach to modelling phaser effects in which the underlying control signal and time-varying spectral response of the effect are jointly learned. The proposed model processes audio in short frames to implement a time-varying filter in the frequency domain, with a transfer function based on typical analog phaser circuit topology. We show that the model can be trained to emulate an analog reference device, while retaining interpretable and adjustable parameters. The frame duration is an important hyper-parameter of the proposed model, so an investigation was carried out into its effect on model accuracy. The optimal frame length depends on both the rate and transient decay-time of the target effect, but the frame length can be altered at inference time without a significant change in accuracy.Comment: Accepted for publication in Proc. DAFx23, Copenhagen, Denmark, September 202
    corecore