154 research outputs found

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Virtual prototyping with surface reconstruction and freeform geometric modeling using level-set method

    Get PDF
    More and more products with complex geometries are being designed and manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface is a geometrical feature widely used in modern products like car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and generate digital prototypes with freeform surfaces is an important issue in CAD. This paper presents the development of a Virtual Sculpting system and addresses the issues of surface reconstruction from dexel data structures and freeform geometric modeling using the level-set method from distance field structure. Our virtual sculpting method is based on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic input device integrated with the computer visualization. This dissertation presents the result of the study and consists primarily of four papers --Abstract, page iv

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Ubiquitous volume rendering in the web platform

    Get PDF
    176 p.The main thesis hypothesis is that ubiquitous volume rendering can be achieved using WebGL. The thesis enumerates the challenges that should be met to achieve that goal. The results allow web content developers the integration of interactive volume rendering within standard HTML5 web pages. Content developers only need to declare the X3D nodes that provide the rendering characteristics they desire. In contrast to the systems that provide specific GPU programs, the presented architecture creates automatically the GPU code required by the WebGL graphics pipeline. This code is generated directly from the X3D nodes declared in the virtual scene. Therefore, content developers do not need to know about the GPU.The thesis extends previous research on web compatible volume data structures for WebGL, ray-casting hybrid surface and volumetric rendering, progressive volume rendering and some specific problems related to the visualization of medical datasets. Finally, the thesis contributes to the X3D standard with some proposals to extend and improve the volume rendering component. The proposals are in an advance stage towards their acceptance by the Web3D Consortium

    Interdisciplinary Film & Digital Media 2015 APR Self-Study & Documents

    Get PDF
    UNM Interdisciplinary Film & Digital Media APR self-study report, review team report, response to review report, and initial action plan for Spring 2015, fulfilling requirements of the Higher Learning Commission. IFDM was absorbed by the Cinematic Arts Department following this review

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    MIMESIS, un environnement de conception et de simulation de modèles physiques particulaires masses-interactions CORDIS-ANIMA pour l'animation : du mouvement généré à l'image du mouvement

    Get PDF
    This thesis deals with the design of a computer framework dedicaced to animation by the physical mass-interaction CORDIS-ANIMA networks. Genericity and modularity of CORDIS-ANIMA having been still largely proved, the design and the implementation of such framework have to face with other theorical and practical problems that are discussed here in order to include every function that are required for an interactive creation of models and the communication inside a global chain of production of animated pictures. This thesis ends on the report of various situation of use in pedagogical, research and creation contexts.Cette thèse a pour objet la conception d’un environnement pour l’animation à l’aide de réseaux masses–interactions CORDIS-ANIMA. La généricité et la modularité de CORDIS-ANIMA ayant largement prouvé leur intérêt pour l’animation depuis 25 ans, la conception et l’implantation d’un environnement de conception de tels modèles doivent faire face à d’autres problématiques théoriques et pratiques qui seront discutées dans ce manuscrit, dans le but d’inclure dans cet environnement toutes les fonctionnalités requises pour une création interactive de modèles de mouvement et leur insertion dans une chaîne globale de production d’images animées. Cette thèse se terminera par le compte-rendu de situations d’utilisation dans un cadre pédagogique, de recherche et de création
    • …
    corecore