105 research outputs found

    A general approach to derive uncontrolled reversible semantics

    Get PDF
    Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order π-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature

    A General Approach to Derive Uncontrolled Reversible Semantics

    Get PDF
    Reversible computing is a paradigm where programs can execute backward as well as in the usual forward direction. Reversible computing is attracting interest due to its applications in areas as different as biochemical modelling, simulation, robotics and debugging, among others. In concurrent systems the main notion of reversible computing is called causal-consistent reversibility, and it allows one to undo an action if and only if its consequences, if any, have already been undone. This paper presents a general and automatic technique to define a causal-consistent reversible extension for given forward models. We support models defined using a reduction semantics in a specific format and consider a causality relation based on resources consumed and produced. The considered format is general enough to fit many formalisms studied in the literature on causal-consistent reversibility, notably Higher-Order ?-calculus and Core Erlang, an intermediate language in the Erlang compilation. Reversible extensions of these models in the literature are ad hoc, while we build them using the same general technique. This also allows us to show in a uniform way that a number of relevant properties, causal-consistency in particular, hold in the reversible extensions we build. Our technique also allows us to go beyond the reversible models in the literature: we cover a larger fragment of Core Erlang, including remote error handling based on links, which has never been considered in the reversibility literature

    Fair Termination of Binary Sessions

    Get PDF
    A binary session is a private communication channel that connects two processes, each adhering to a protocol description called session type. In this work, we study the first type system that ensures the fair termination of binary sessions. A session fairly terminates if all of the infinite executions admitted by its protocol are deemed ‘unrealistic’ because they violate certain fairness assumptions. Fair termination entails the eventual completion of all pending input/output actions, including those that depend on the completion of an unbounded number of other actions in possibly different sessions. This form of lock freedom allows us to address a large family of natural communication patterns that fall outside the scope of existing type systems. Our type system is also the first to adopt fair subtyping, a liveness-preserving refinement of the standard subtyping relation for session types that so far has only been studied theoretically. Fair subtyping is surprisingly subtle not only to characterize concisely but also to use appropriately, to the point that the type system must carefully account for all usages of fair subtyping to avoid compromising its liveness-preserving properties

    Formalizing Functions as Processes

    Get PDF
    We present the first formalization of Milner’s classic translation of the λ-calculus into the π-calculus. It is a challenging result with respect to variables, names, and binders, as it requires one to relate variables and binders of the λ-calculus with names and binders in the π-calculus. We formalize it in Abella, merging the set of variables and the set of names, thus circumventing the challenge and obtaining a neat formalization. About the translation, we follow Accattoli’s factoring of Milner’s result via the linear substitution calculus, which is a λ-calculus with explicit substitutions and contextual rewriting rules, mediating between the λ-calculus and the π-calculus. Another aim of the formalization is to investigate to which extent the use of contexts in Accattoli’s refinement can be formalized

    Functional Programming for Embedded Systems

    Get PDF
    Embedded Systems application development has traditionally been carried out in low-level machine-oriented programming languages like C or Assembler that can result in unsafe, error-prone and difficult-to-maintain code. Functional programming with features such as higher-order functions, algebraic data types, polymorphism, strong static typing and automatic memory management appears to be an ideal candidate to address the issues with low-level languages plaguing embedded systems. However, embedded systems usually run on heavily memory-constrained devices with memory in the order of hundreds of kilobytes and applications running on such devices embody the general characteristics of being (i) I/O- bound, (ii) concurrent and (iii) timing-aware. Popular functional language compilers and runtimes either do not fare well with such scarce memory resources or do not provide high-level abstractions that address all the three listed characteristics. This work attempts to address this gap by investigating and proposing high-level abstractions specialised for I/O-bound, concurrent and timing-aware embedded-systems programs. We implement the proposed abstractions on eagerly-evaluated, statically-typed functional languages running natively on microcontrollers. Our contributions are divided into two parts - Part 1 presents a functional reactive programming language - Hailstorm - that tracks side effects like I/O in its type system using a feature called resource types. Hailstorm’s programming model is illustrated on the GRiSP microcontroller board.Part 2 comprises two papers that describe the design and implementation of Synchron, a runtime API that provides a uniform message-passing framework for the handling of software messages as well as hardware interrupts. Additionally, the Synchron API supports a novel timing operator to capture the notion of time, common in embedded applications. The Synchron API is implemented as a virtual machine - SynchronVM - that is run on the NRF52 and STM32 microcontroller boards. We present programming examples that illustrate the concurrency, I/O and timing capabilities of the VM and provide various benchmarks on the response time, memory and power usage of SynchronVM

    Twenty years of rewriting logic

    Get PDF
    AbstractRewriting logic is a simple computational logic that can naturally express both concurrent computation and logical deduction with great generality. This paper provides a gentle, intuitive introduction to its main ideas, as well as a survey of the work that many researchers have carried out over the last twenty years in advancing: (i) its foundations; (ii) its semantic framework and logical framework uses; (iii) its language implementations and its formal tools; and (iv) its many applications to automated deduction, software and hardware specification and verification, security, real-time and cyber-physical systems, probabilistic systems, bioinformatics and chemical systems

    Bridging the Gap between a Behavioural Formal Description Technique and User Interface description language: Enhancing ICO with a Graphical User Interface markup language

    Get PDF
    International audienceIn the last years, User Interface Description Languages (UIDLs) appeared as a suitable solution for developing interactive systems. In order to implement reliable and efficient applications, we propose to employ a formal description technique called ICO (Interactive Cooperative Object) that has been developed to cope with complex behaviours of interactive systems including event-based and multimodal interactions. So far, ICO is able to describe most of the parts of an interactive system, from functional core concerns to fine grain interaction techniques, but, even if it addresses parts of the rendering, it still not has means to describe the effective rendering of such interactive system. This paper presents a solution to overcome this gap using markup languages. A first technique is based on the Java technology called JavaFX and a second technique is based on the emergent UsiXML language for describing user interface components for multi-target platforms. The proposed approach offers a bridge between markup language based descriptions of the user interface components and a robust technique for describing behaviour using ICO modelling. Furthermore, this paper highlights how it is possible to take advantage from both behavioural and markup language description techniques to propose a new model-based approach for prototyping interactive systems. The proposed approach is fully illustrated by a case study using an interactive application embedded into interactive aircraft cockpits

    Workflow models for heterogeneous distributed systems

    Get PDF
    The role of data in modern scientific workflows becomes more and more crucial. The unprecedented amount of data available in the digital era, combined with the recent advancements in Machine Learning and High-Performance Computing (HPC), let computers surpass human performances in a wide range of fields, such as Computer Vision, Natural Language Processing and Bioinformatics. However, a solid data management strategy becomes crucial for key aspects like performance optimisation, privacy preservation and security. Most modern programming paradigms for Big Data analysis adhere to the principle of data locality: moving computation closer to the data to remove transfer-related overheads and risks. Still, there are scenarios in which it is worth, or even unavoidable, to transfer data between different steps of a complex workflow. The contribution of this dissertation is twofold. First, it defines a novel methodology for distributed modular applications, allowing topology-aware scheduling and data management while separating business logic, data dependencies, parallel patterns and execution environments. In addition, it introduces computational notebooks as a high-level and user-friendly interface to this new kind of workflow, aiming to flatten the learning curve and improve the adoption of such methodology. Each of these contributions is accompanied by a full-fledged, Open Source implementation, which has been used for evaluation purposes and allows the interested reader to experience the related methodology first-hand. The validity of the proposed approaches has been demonstrated on a total of five real scientific applications in the domains of Deep Learning, Bioinformatics and Molecular Dynamics Simulation, executing them on large-scale mixed cloud-High-Performance Computing (HPC) infrastructures

    Coalgebra for the working software engineer

    Get PDF
    Often referred to as ‘the mathematics of dynamical, state-based systems’, Coalgebra claims to provide a compositional and uniform framework to spec ify, analyse and reason about state and behaviour in computing. This paper addresses this claim by discussing why Coalgebra matters for the design of models and logics for computational phenomena. To a great extent, in this domain one is interested in properties that are preserved along the system’s evolution, the so-called ‘business rules’ or system’s invariants, as well as in liveness requirements, stating that e.g. some desirable outcome will be eventually produced. Both classes are examples of modal assertions, i.e. properties that are to be interpreted across a transition system capturing the system’s dynamics. The relevance of modal reasoning in computing is witnessed by the fact that most university syllabi in the area include some incursion into modal logic, in particular in its temporal variants. The novelty is that, as it happens with the notions of transition, behaviour, or observational equivalence, modalities in Coalgebra acquire a shape . That is, they become parametric on whatever type of behaviour, and corresponding coinduction scheme, seems appropriate for addressing the problem at hand. In this context, the paper revisits Coalgebra from a computational perspective, focussing on three topics central to software design: how systems are modelled, how models are composed, and finally, how properties of their behaviours can be expressed and verified.Fuzziness, as a way to express imprecision, or uncertainty, in computation is an important feature in a number of current application scenarios: from hybrid systems interfacing with sensor networks with error boundaries, to knowledge bases collecting data from often non-coincident human experts. Their abstraction in e.g. fuzzy transition systems led to a number of mathematical structures to model this sort of systems and reason about them. This paper adds two more elements to this family: two modal logics, framed as institutions, to reason about fuzzy transition systems and the corresponding processes. This paves the way to the development, in the second part of the paper, of an associated theory of structured specification for fuzzy computational systems
    • 

    corecore