45 research outputs found

    The Parallel Meaning Bank:A Framework for Semantically Annotating Multiple Languages

    Get PDF
    This paper gives a general description of the ideas behind the Parallel Meaning Bank, a framework with the aim to provide an easy way to annotate compositional semantics for texts written in languages other than English. The annotation procedure is semi-automatic, and comprises seven layers of linguistic information: segmentation, symbolisation, semantic tagging, word sense disambiguation, syntactic structure, thematic role labelling, and co-reference. New languages can be added to the meaning bank as long as the documents are based on translations from English, but also introduce new interesting challenges on the linguistics assumptions underlying the Parallel Meaning Bank.Comment: 13 pages, 5 figures, 1 tabl

    DRS at MRP 2020:Dressing up Discourse Representation Structures as Graphs

    Get PDF
    Discourse Representation Theory (DRT) is a formal account for representing the meaning of natural language discourse. Meaning in DRT is modeled via a Discourse Representation Structure (DRS), a meaning representation with a model-theoretic interpretation, which is usually depicted as nested boxes. In contrast, a directed labeled graph is a common data structure used to encode semantics of natural language texts. The paper describes the procedure of dressing up DRSs as directed labeled graphs to include DRT as a new framework in the 2020 shared task on Cross-Framework and Cross-Lingual Meaning Representation Parsing. Since one of the goals of the shared task is to encourage unified models for several semantic graph frameworks, the conversion procedure was biased towards making the DRT graph framework somewhat similar to other graph-based meaning representation frameworks.Comment: 10 pages, 4 figures, 4 tables, CoNLL 2020 Shared Tas

    Global and Local Hierarchy-aware Contrastive Framework for Implicit Discourse Relation Recognition

    Full text link
    Due to the absence of explicit connectives, implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis. The critical step for IDRR is to learn high-quality discourse relation representations between two arguments. Recent methods tend to integrate the whole hierarchical information of senses into discourse relation representations for multi-level sense recognition. Nevertheless, they insufficiently incorporate the static hierarchical structure containing all senses (defined as global hierarchy), and ignore the hierarchical sense label sequence corresponding to each instance (defined as local hierarchy). For the purpose of sufficiently exploiting global and local hierarchies of senses to learn better discourse relation representations, we propose a novel GLobal and LOcal Hierarchy-aware Contrastive Framework (GLOF), to model two kinds of hierarchies with the aid of contrastive learning. Experimental results on the PDTB dataset demonstrate that our method remarkably outperforms the current state-of-the-art model at all hierarchical levels.Comment: 13 pages, 10 figure

    Character-based Neural Semantic Parsing

    Get PDF
    Humans and computers do not speak the same language. A lot of day-to-day tasks would be vastly more efficient if we could communicate with computers using natural language instead of relying on an interface. It is necessary, then, that the computer does not see a sentence as a collection of individual words, but instead can understand the deeper, compositional meaning of the sentence. A way to tackle this problem is to automatically assign a formal, structured meaning representation to each sentence, which are easy for computers to interpret. There have been quite a few attempts at this before, but these approaches were usually heavily reliant on predefined rules, word lists or representations of the syntax of the text. This made the general usage of these methods quite complicated. In this thesis we employ an algorithm that can learn to automatically assign meaning representations to texts, without using any such external resource. Specifically, we use a type of artificial neural network called a sequence-to-sequence model, in a process that is often referred to as deep learning. The devil is in the details, but we find that this type of algorithm can produce high quality meaning representations, with better performance than the more traditional methods. Moreover, a main finding of the thesis is that, counter intuitively, it is often better to represent the text as a sequence of individual characters, and not words. This is likely the case because it helps the model in dealing with spelling errors, unknown words and inflections

    Discovering multiword expressions

    Get PDF
    In this paper, we provide an overview of research on multiword expressions (MWEs), from a natural lan- guage processing perspective. We examine methods developed for modelling MWEs that capture some of their linguistic properties, discussing their use for MWE discovery and for idiomaticity detection. We con- centrate on their collocational and contextual preferences, along with their fixedness in terms of canonical forms and their lack of word-for-word translatatibility. We also discuss a sample of the MWE resources that have been used in intrinsic evaluation setups for these methods

    VALSE: A Task-independent benchmark for Vision and Language models centered on linguistic phenomena

    Get PDF
    We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V&L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V&L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V&L models from a linguistic perspective, complementing the canonical task-centred V&L evaluations
    corecore