43 research outputs found

    Towards quality assurance of software product lines with adversarial configurations

    Get PDF
    International audienceSoftware product line (SPL) engineers put a lot of effort to ensure that, through the setting of a large number of possible configuration options, products are acceptable and well-tailored to customers’ needs. Unfortunately, options and their mutual interactions create a huge configuration space which is intractable to exhaustively explore. Instead of testing all products, machine learning is increasingly employed to approximate the set of acceptable products out of a small training sample of configurations. Machine learning (ML) techniques can refine a software product line through learned constraints and a priori prevent non-acceptable products to be derived. In this paper, we use adversarial ML techniques to generate adversarial configurations fooling ML classifiers and pinpoint incorrect classifications of products (videos) derived from an industrial video generator. Our attacks yield (up to) a 100% misclassification rate and a drop in accuracy of 5%. We discuss the implications these results have on SPL quality assurance

    A mapping study on documentation in Continuous Software Development

    Get PDF
    Context: With an increase in Agile, Lean, and DevOps software methodologies over the last years (collectively referred to as Continuous Software Development (CSD)), we have observed that documentation is often poor. Objective: This work aims at collecting studies on documentation challenges, documentation practices, and tools that can support documentation in CSD. Method: A systematic mapping study was conducted to identify and analyze research on documentation in CSD, covering publications between 2001 and 2019. Results: A total of 63 studies were selected. We found 40 studies related to documentation practices and challenges, and 23 studies related to tools used in CSD. The challenges include: informal documentation is hard to understand, documentation is considered as waste, productivity is measured by working software only, documentation is out-of-sync with the software and there is a short-term focus. The practices include: non-written and informal communication, the usage of development artifacts for documentation, and the use of architecture frameworks. We also made an inventory of numerous tools that can be used for documentation purposes in CSD. Overall, we recommend the usage of executable documentation, modern tools and technologies to retrieve information and transform it into documentation, and the practice of minimal documentation upfront combined with detailed design for knowledge transfer afterwards. Conclusion: It is of paramount importance to increase the quantity and quality of documentation in CSD. While this remains challenging, practitioners will benefit from applying the identified practices and tools in order to mitigate the stated challenges

    BPM2DDD: A Systematic Process for Identifying Domains from Business Processes Models

    Get PDF
    Domain-driven design is one of the most used approaches for identifying microservice architectures, which should be built around business capabilities. There are a number of documentation with principles and patterns for its application. However, despite its increasing use there is still a lack of systematic approaches for creating the context maps that will be used to design the microservices. This article presents BPM2DDD, a systematic approach for identification of bounded contexts and their relationships based on the analysis of business processes models, which provide a business view of an organisation. We present an example of its application in a real business process, which has also be used to perform a comparative application with external analysts. The technique has been applied to a real project in the department of transport of a Brazilian state capital, and has been incorporated into the software development process employed by them to develop their new system.</jats:p

    Security of Cyber-Physical Systems

    Get PDF
    Cyber-physical system (CPS) innovations, in conjunction with their sibling computational and technological advancements, have positively impacted our society, leading to the establishment of new horizons of service excellence in a variety of applicational fields. With the rapid increase in the application of CPSs in safety-critical infrastructures, their safety and security are the top priorities of next-generation designs. The extent of potential consequences of CPS insecurity is large enough to ensure that CPS security is one of the core elements of the CPS research agenda. Faults, failures, and cyber-physical attacks lead to variations in the dynamics of CPSs and cause the instability and malfunction of normal operations. This reprint discusses the existing vulnerabilities and focuses on detection, prevention, and compensation techniques to improve the security of safety-critical systems

    Automating interpretations of trustworthiness

    Get PDF

    Citizen Science

    Get PDF
    Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development. This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today
    corecore