8 research outputs found

    Proceedings of the 33rd Annual Workshop of the Psychology of Programming Interest Group

    Get PDF
    This is the Proceedings of the 33rd Annual Workshop of the Psychology of Programming Interest Group (PPIG). This was the first PPIG to be held physically since 2019, following the two online-only PPIGs in 2020 and 2021, both during the Covid pandemic. It was also the first PPIG conference to be designed specifically for hybrid attendance. Reflecting the theme, it was hosted by Music Computing Lab at the Open University in Milton Keynes

    Observational Studies of the Learning Behaviour of Distance Education Students using an Asynchronous, Remote, Recording and Replay Tool

    Get PDF
    This thesis gives details of a series of studies that were designed to investigate how distance education students use courseware in their learning and how time, comfort and learning styles, should be taken into account when designing distance education courses. The online behaviour of groups of distance education students, who volunteered to take part, were observed using an asynchronous, remote recording and replay tool (AESOP) as they completed online practical exercises as part of the Open University course M206 Computing: An Object Oriented Approach. Web based questionnaires were used to determine data not obtainable from the recording software, including students’ levels of comfort with computing tasks and learning styles as measured by two well known questionnaires and another developed for the study. The profile of the times at which students study suggests the times at which they study are constrained by their personal circumstances. Time of day was not found to be a factor that affected academic performance or online behaviour. Students’ self expressed levels of comfort with computing tasks were found to be significantly related to academic performance. Significant relationships were also noted between students’ levels of preferences for the Activist and Dependent learning styles and academic performance. The Theorist, Collaborative and Visual styles were also found to be significantly related to the time students took to complete online practical work. A series of fine grained analyses looking at students' workspace arrangement, use of the notes page and sequence in which they used the course material, all raise further issues pertinent to the research and improvement in computer based instructional materials and distance education

    Challenges of rapid migration to fully virtual education in the age of the Corona virus pandemic: experiences from across the world

    Get PDF
    The social disruption caused by the sudden eruption of the Corona Virus pandemic has shaken the whole world, influencing all levels of education immensely. Notwithstanding there was a lack of preparedness for this global public health emergency which continues to affect all aspects of work and life. The problem is, naturally, multifaceted, fast evolving and complex, affecting everyone, threatening our well-being, the global economy, the environment and all societal and cultural norms and our everyday activities. In a recent UNESCO report it is noted that nearly a billion and a quarter (which is 67,7 % of the total number) of learners have been affected by the Corona Virus pandemic worldwide. The education sector at all levels has been one of the hardest hit sectors particularly as the academic/school year was in full swing. The impact of the pandemic is widespread, representing a health hazard worldwide. Being such, it profoundly affects society as a whole, and its members that are, in particular, i) individuals (the learners, their parents, educators, support staff), ii) schools, training organisations, pedagogical institutions and education systems, iii) quickly transformed policies, methods and pedagogies to serve the newly appeared needs of the latter. Lengthy developments of such scale usually take years of consultation, strategic planning and implementation. In addition to raising awareness across the population of the dangers of the virus transmission and instigating total lockdown, it has been necessary to develop mechanisms for continuing the delivery of education as well as demanding mechanisms for assuring the quality of the educational experience and educational results. There is often scepticism about securing quality standards in such a fast moving situation. Often in the recent past, the perception was that courses and degrees leading to an award are inferior if the course modules (and sometimes its assessment components) were wholly online. Over the last three decades most Higher Education institutions developed both considerable infrastructure and knowhow enabling distance mode delivery schools (Primary and Secondary) had hardly any necessary infrastructure nor adequate knowhow for enabling virtual education. In addition, community education and various training providers were mainly delivered face-to-face and that had to either stop altogether or rapidly convert materials, exercises and tests for online delivery and testing. A high degree of flexibility and commitment was demanded of all involved and particularly from the educators, who undertook to produce new educational materials in order to provide online support to pupils and students. Apart from the delivery mode of education, which is serving for certificated programmes, it is essential to ensure that learners’ needs are thoroughly and continuously addressed and are efficiently supported throughout the Coronavirus or any other future lockdown. The latter can be originated by various causes and reasons that vary in nature, such as natural or socioeconomical. Readiness, thus, in addition to preparedness, is the primary key question and solution when it comes to quality education for any lockdown. In most countries, the compulsory primary and secondary education sectors have been facing a more difficult challenge than that faced by Higher Education. The poor or in many cases non-existent technological infrastructure and low technological expertise of the teachers, instructors and parents, make the delivery of virtual education difficult or even impossible. The latter, coupled with phenomena such as social exclusion and digital divide where thousands of households do not have adequate access to broadband Internet, Wi-Fi infrastructure and personal computers hamper the promising and strenuous virtual solutions. The shockwaves of the sudden demands on all sectors of society and on individuals required rapid decisions and actions. We will not attempt to answer the question “Why was the world unprepared for the onslaught of the Coronavirus pandemic” but need to ascertain the level of preparedness and readiness particularly of the education sector, to effect the required rapid transition. We aimed to identify the challenges, and problems faced by the educators and their institutions. Through first-hand experiences we also identify best practices and solutions reached. Thus we constructed a questionnaire to gather our own responses but also experiences from colleagues and members of our environment, family, friends, and colleagues. This paper reports the first-hand experiences and knowledge of 33 co-authors from 27 institutions and from 13 different countries from Europe, Asia, and Africa. The communication technologies and development platforms used are identified; the challenges faced as well as solutions and best practices are reported. The findings are consolidated into the four areas explored i.e. Development Platforms, Communications Technologies, Challenges/Problems and Solutions/Best Practices. The conclusion summarises the findings into emerging themes and similarities. Reflections on the lasting impact of the effect of Coronavirus on education, limitations of study, and indications of future work complete the paper

    Computers for learning : an empirical modelling perspective

    Get PDF
    In this thesis, we explore the extent to which computers can provide support for domain learning. Computer support for domain learning is prominent in two main areas: in education, through model building and the use of educational software; and in the workplace, where models such as spreadsheets and prototypes are constructed. We shall argue that computerbased learning has only realised a fraction of its full potential due to the limited scope for combining domain learning with conventional computer programming. In this thesis, we identify some of the limitations in the current support that computers offer for learning, and propose Empirical Modelling (EM) as a way of overcoming them. We shall argue that, if computers are to be successfully used for learning, they must support the widest possible range of learning activities. We introduce an Experiential Framework for Learning (EFL) within which to characterise learning activities that range from the private to the public, from the empirical to the theoretical, and from the concrete to the abstract. The term ‘experiential’ reflects a view of knowledge as rooted in personal experience. We discuss the merits of computer-based modelling methods with reference to a broad constructionist perspective on learning that encompasses bricolage and situated learning. We conclude that traditional programming practice is not well-suited to supporting bricolage and situated learning since the principles of program development inhibit the essential cognitive model building activity that informs domain learning. In contrast, the EM approach to model construction directly targets the semantic relation between the computer model and its domain referent and exploits principles that are closely related to the modeller’s emerging understanding or construal. In this way, EM serves as a uniform modelling approach to support and integrate learning activities across the entire spectrum of the EFL. This quality makes EM a particularly suitable approach for computer-based model construction to support domain learning. In the concluding chapters of the thesis, we demonstrate the qualities of EM for educational technology with reference to practical case studies. These include: a range of EM models that have advantages over conventional educational software due to their particularly open-ended and adaptable nature and that serve to illustrate a variety of ways in which learning activities across the EFL can be supported and scaffolded

    Computers for learning : an empirical modelling perspective

    Get PDF
    In this thesis, we explore the extent to which computers can provide support for domain learning. Computer support for domain learning is prominent in two main areas: in education, through model building and the use of educational software; and in the workplace, where models such as spreadsheets and prototypes are constructed. We shall argue that computerbased learning has only realised a fraction of its full potential due to the limited scope for combining domain learning with conventional computer programming. In this thesis, we identify some of the limitations in the current support that computers offer for learning, and propose Empirical Modelling (EM) as a way of overcoming them. We shall argue that, if computers are to be successfully used for learning, they must support the widest possible range of learning activities. We introduce an Experiential Framework for Learning (EFL) within which to characterise learning activities that range from the private to the public, from the empirical to the theoretical, and from the concrete to the abstract. The term ‘experiential’ reflects a view of knowledge as rooted in personal experience. We discuss the merits of computer-based modelling methods with reference to a broad constructionist perspective on learning that encompasses bricolage and situated learning. We conclude that traditional programming practice is not well-suited to supporting bricolage and situated learning since the principles of program development inhibit the essential cognitive model building activity that informs domain learning. In contrast, the EM approach to model construction directly targets the semantic relation between the computer model and its domain referent and exploits principles that are closely related to the modeller’s emerging understanding or construal. In this way, EM serves as a uniform modelling approach to support and integrate learning activities across the entire spectrum of the EFL. This quality makes EM a particularly suitable approach for computer-based model construction to support domain learning. In the concluding chapters of the thesis, we demonstrate the qualities of EM for educational technology with reference to practical case studies. These include: a range of EM models that have advantages over conventional educational software due to their particularly open-ended and adaptable nature and that serve to illustrate a variety of ways in which learning activities across the EFL can be supported and scaffolded.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Stochastic modelling of spatial collective adaptive systems

    Get PDF
    Collective Adaptive Systems (CAS) are composed of individual agents with internal knowledge and rules which organize themselves into ensembles. These ensembles can often be observed to exhibit behaviour resembling that of a single entity with a clear goal and a consistent internal knowledge, even when the individual agents within the ensemble are not managed by any outside, globally-accessible entity. Because of their lack of a need for centralized control which results in high robustness, CAS are commonly observed in nature – and for similar reasons are often reflected in human engineered systems. Researching the patterns of operation observed in such systems provides meaningful insight into how to design and optimise stable multiagent systems capable of withstanding adverse conditions. Formal modelling provides valuable intellectual tools which can be applied to the problem of analysis of systems by means of modelling and simulation. In this thesis we explore the modelling of CAS in which space (topology and distances) plays a significant role. Working with CARMA (Collective Adaptive Resource-sharing Markovian Agents) a formal feature-rich language for modelling stochastic CAS, we investigate a number of spatial CAS scenarios from the realm of urban planning. When components operate in a spatial context, their behaviour can be affected by where they are located in that space. For example, their location can influence the speed at which they move, and their ability to communicate with other components. Components in CARMA have internal store, and behaviour expressed by Markov processes. They can communicate with each other through sending messages on state transitions in a unicast or broadcast fashion. Simulation with pseudo-random events can be used to obtain values of measures applied to CARMA models, providing a basis for analysis and optimisation. The CARMA models developed in the case studies are data-driven and the results of simulating these models are compared with real-world data. In particular, we explore two scenarios: crowd-routing and city transportation systems. Building on top of CARMA, we also introduce CGP (CARMA Graphical Plugin), a novel graphical software tool for graphically specifying spatial CAS systems with the feature of automatic translation into CARMA models. We also supply CARMA with additional syntax structures for expressing spatial constructs

    Empirical modelling for participative business process reengineering

    Get PDF
    The purpose of this thesis is to introduce a new broad approach to computing - Empirical Modelling (EM) - and to propose a way of applying this approach for system development so as to avoid the limitations of conventional approaches and integrate system development with business process reengineering (BPR). Based on the concepts of agency, observable and dependency, EM is an experiencebased approach to modelling with computers in which the modeller interacts with an artefact through continuous observations and experiments. It is a natural way of working for business process modelling because the modeller is involved in, and takes account of, the real world context. It is also adaptable to a rapidly changing environment as the computer-based models serve as creative artefacts with which the modeller can interact in a situated and open-ended manner. This thesis motivates and illustrates the EM approach to new concepts of participative BPR and participative process modelling. That is, different groups of people, with different perceptions, competencies and requirements, can be involved during the process of system development and BPR, rather than just being involved at an early stage. This concept aims to address the well-known high failure rate of BPR. A framework SPORE (situated process of requirements engineering), which has been proposed to guide the process of cultivating requirements in a situated manner, is extended to participative BPR (i.e. to support many users in a distributed environment). Two levels of modelling are proposed for the integration of contextual understanding and system development. A comparison between EM and object-orientation is also provided to give insight into how EM differs from current methodologies and to point out the potential of EM in system development and BPR. The ISMs (interactive situation models), built using the principles and tools of EM, are used to form artefacts during the modelling process. A warehouse and logistics management system is taken as an illustrative case study for applying this framework
    corecore