22 research outputs found

    A Call for Standardization and Validation of Text Style Transfer Evaluation

    Full text link
    Text Style Transfer (TST) evaluation is, in practice, inconsistent. Therefore, we conduct a meta-analysis on human and automated TST evaluation and experimentation that thoroughly examines existing literature in the field. The meta-analysis reveals a substantial standardization gap in human and automated evaluation. In addition, we also find a validation gap: only few automated metrics have been validated using human experiments. To this end, we thoroughly scrutinize both the standardization and validation gap and reveal the resulting pitfalls. This work also paves the way to close the standardization and validation gap in TST evaluation by calling out requirements to be met by future research.Comment: Accepted to Findings of ACL 202

    Deep Learning for Text Style Transfer: A Survey

    Full text link
    Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing, and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of this task. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_SurveyComment: Computational Linguistics Journal 202

    Gamma Sampling: Fine-grained Controlling Language Models without Training

    Full text link
    The dominant approaches for controlling language models achieve prominence in controlling high-level attributes (e.g. topic and sentiment). However, these methods often require condition-specific data or are computationally expensive. We propose a new simple guided decoding method, Gamma Sampling, which does not require any training data to achieve fine-grained controllable text generation while maintaining a fast generation speed. Gamma Sampling introduces attribute-related information (provided by humans or language models themselves) into the sampling process to guide language models to generate texts with desired attributes. Since no training is involved, Gamma Sampling can be easily applied to any language model for controllable text generation. Through experiments, we show that Gamma Sampling-steered GPT2-small (117M) outperforms baselines such as PPLM (345M) and CTRL (1.6B) in diversity, attribute relevance, and overall quality of generated samples.Comment: 20 pages, 5 figure

    Towards Verifiable Text Generation with Symbolic References

    Full text link
    Large language models (LLMs) have demonstrated an impressive ability to synthesize plausible and fluent text. However they remain vulnerable to hallucinations, and thus their outputs generally require manual human verification for high-stakes applications, which can be time-consuming and difficult. This paper proposes symbolically grounded generation (SymGen) as a simple approach for enabling easier validation of an LLM's output. SymGen prompts an LLM to interleave its regular output text with explicit symbolic references to fields present in some conditioning data (e.g., a table in JSON format). The references can be used to display the provenance of different spans of text in the generation, reducing the effort required for manual verification. Across data-to-text and question answering experiments, we find that LLMs are able to directly output text that makes use of symbolic references while maintaining fluency and accuracy.Comment: 46 pages, 4 figures, 6 table

    PaLM: Scaling Language Modeling with Pathways

    Full text link
    Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies

    Semantic consistency in text generation

    Get PDF
    Automatic input-grounded text generation tasks process input texts and generate human-understandable natural language text for the processed information. The development of neural sequence-to-sequence (seq2seq) models, which are usually trained in an end-to-end fashion, pushed the frontier of the performance on text generation tasks expeditiously. However, they are claimed to be defective in semantic consistency w.r.t. their corresponding input texts. Also, not only the models are to blame. The corpora themselves always include examples whose output is semantically inconsistent to its input. Any model that is agnostic to such data divergence issues will be prone to semantic inconsistency. Meanwhile, the most widely-used overlap-based evaluation metrics comparing the generated texts to their corresponding references do not evaluate the input-output semantic consistency explicitly, which makes this problem hard to detect. In this thesis, we focus on studying semantic consistency in three automatic text generation scenarios: Data-to-text Generation, Single Document Abstractive Summarization, and Chit-chat Dialogue Generation, by seeking for the answers to the following research questions: (1) how to define input-output semantic consistency in different text generation tasks? (2) how to quantitatively evaluate the input-output semantic consistency? (3) how to achieve better semantic consistency in individual tasks? We systematically define the semantic inconsistency phenomena in these three tasks as omission, intrinsic hallucination, and extrinsic hallucination. For Data-to-text Generation, we jointly learn a sentence planner that tightly controls which part of input source gets generated in what sequence, with a neural seq2seq text generator, to decrease all three types of semantic inconsistency in model-generated texts. The evaluation results confirm that the texts generated by our model contain much less omissions while maintaining low level of extrinsic hallucinations without sacrificing fluency compared to seq2seq models. For Single Document Abstractive Summarization, we reduce the level of extrinsic hallucinations in training data by automatically introducing assisting articles to each document-summary instance to provide the supplemental world-knowledge that is present in the summary but missing from the doc ument. With the help of a novel metric, we show that seq2seq models trained with as sisting articles demonstrate less extrinsic hallucinations than the ones trained without them. For Chit-chat Dialogue Generation, by filtering out the omitted and hallucinated examples from training set using a newly introduced evaluation metric, and encoding it into the neural seq2seq response generation models as a control factor, we diminish the level of omissions and extrinsic hallucinations in the generated dialogue responses
    corecore