93 research outputs found

    What’s going on in my city? Recommender systems and electronic participatory budgeting

    Get PDF
    In this paper, we present electronic participatory budgeting (ePB) as a novel application domain for recommender systems. On public data from the ePB platforms of three major US cities – Cambridge, Miami and New York City–, we evaluate various methods that exploit heterogeneous sources and models of user preferences to provide personalized recommendations of citizen proposals. We show that depending on characteristics of the cities and their participatory processes, particular methods are more effective than others for each city. This result, together with open issues identified in the paper, call for further research in the area

    Impressions in Recommender Systems: Present and Future

    Get PDF
    Impressions are a novel data source providing researchers and practitioners with more details about user interactions and their context. In particular, an impression contain the items shown on screen to users, alongside users' interactions toward such items. In recent years, interest in impressions has thrived, and more papers use impressions in recommender systems. Despite this, the literature does not contain a comprehensive review of the current topics and future directions. This work summarizes impressions in recommender systems under three perspectives: recommendation models, datasets with impressions, and evaluation methodologies. Then, we propose several future directions with an emphasis on novel approaches. This work is part of an ongoing review of impressions in recommender systems

    2nd FATREC Workshop: Responsible Recommendation

    Get PDF
    The second Workshop on Responsible Recommendation (FATREC 2018) was held in conjunction with the 12th ACM Conference on Recommender Systems on October 6th, 2018 in Vancouver, Canada. This full-day workshop brought together researchers and practitioners to discuss several topics under the banner of social responsibility in recommender systems: fairness, accountability, transparency, privacy, and other ethical and social concerns

    Spectral Collaborative Filtering

    Full text link
    Despite the popularity of Collaborative Filtering (CF), CF-based methods are haunted by the \textit{cold-start} problem, which has a significantly negative impact on users' experiences with Recommender Systems (RS). In this paper, to overcome the aforementioned drawback, we first formulate the relationships between users and items as a bipartite graph. Then, we propose a new spectral convolution operation directly performing in the \textit{spectral domain}, where not only the proximity information of a graph but also the connectivity information hidden in the graph are revealed. With the proposed spectral convolution operation, we build a deep recommendation model called Spectral Collaborative Filtering (SpectralCF). Benefiting from the rich information of connectivity existing in the \textit{spectral domain}, SpectralCF is capable of discovering deep connections between users and items and therefore, alleviates the \textit{cold-start} problem for CF. To the best of our knowledge, SpectralCF is the first CF-based method directly learning from the \textit{spectral domains} of user-item bipartite graphs. We apply our method on several standard datasets. It is shown that SpectralCF significantly outperforms state-of-the-art models. Code and data are available at \url{https://github.com/lzheng21/SpectralCF}.Comment: RecSys201

    Characterizing Impression-Aware Recommender Systems

    Get PDF
    Impression-aware recommender systems (IARS) are a type of recommenders that learn user preferences using their interactions and the recommendations (also known as impressions) shown to users. The community’s interest in this type of recommenders has steadily increased in recent years. To aid in characterizing this type of recommenders, we propose a theoretical framework to define IARS and classify the recommenders present in the state-of-the-art. We start this work by defining core concepts related to this type of recommenders, such as impressions and user feedback. Based on this theoretical framework, we identify and define three properties and three taxonomies that characterize IARS. Lastly, we undergo a systematic literature review where we discover and select papers belonging to the state-of-the-art. Our review analyzes papers under the properties and taxonomies we propose; we highlight the most and least common properties and taxonomies used in the literature, their relations, and their evolution over time, among others

    An ensemble approach of recurrent neural networks using pre-trained embeddings for playlist completion

    Get PDF
    This paper describes the approach of the D2KLab team to the RecSys Challenge 2018 that focuses on the task of playlist completion. We propose an ensemble strategy of different recurrent neural networks leveraging pre-trained embeddings representing tracks, artists, albums, and titles as inputs. We also use lyrics from which we extract semantic and stylistic features that we fed into the network for the creative track. The RNN learns a probabilistic model from the sequences of items in the playlist, which is then used to predict the most likely tracks to be added to the playlist. Concerning the playlists without tracks, we implemented a fall-back strategy called Title2Rec that generates recommendations using only the playlist title. We optimized the RNN, Title2Rec, and the ensemble approach on a validation set, tuning hyper-parameters such as the optimizer algorithm, the learning rate, and the generation strategy. This approach is effective in predicting tracks for a playlist and flexible to include diverse types of inputs, but it is also computationally demanding in the training phase

    Workshop on Learning and Evaluating Recommendations with Impressions (LERI)

    Get PDF
    Recommender systems typically rely on past user interactions as the primary source of information for making predictions. However, although highly informative, past user interactions are strongly biased. Impressions, on the other hand, are a new source of information that indicate the items displayed on screen when the user interacted (or not) with them, and have the potential to impact the field of recommender systems in several ways. Early research on impressions was constrained by the limited availability of public datasets, but this is rapidly changing and, as a consequence, interest in impressions has increased. Impressions present new research questions and opportunities, but also bring new challenges. Several works propose to use impressions as part of recommender models in various ways and discuss their information content. Others explore their potential in off-policy-estimation and reinforcement learning. Overall, the interest of the community is growing, but efforts in this direction remain disconnected. Therefore, we believe that a workshop would be useful in bringing the community together
    corecore