8 research outputs found

    Constrained Type Families

    Get PDF
    We present an approach to support partiality in type-level computation without compromising expressiveness or type safety. Existing frameworks for type-level computation either require totality or implicitly assume it. For example, type families in Haskell provide a powerful, modular means of defining type-level computation. However, their current design implicitly assumes that type families are total, introducing nonsensical types and significantly complicating the metatheory of type families and their extensions. We propose an alternative design, using qualified types to pair type-level computations with predicates that capture their domains. Our approach naturally captures the intuitive partiality of type families, simplifying their metatheory. As evidence, we present the first complete proof of consistency for a language with closed type families.Comment: Originally presented at ICFP 2017; extended editio

    Abstracting Extensible Data Types: Or, Rows by Any Other Name

    Get PDF
    We present a novel typed language for extensible data types, generalizing and abstracting existing systems of row types and row polymorphism. Extensible data types are a powerful addition to traditional functional programming languages, capturing ideas from OOP-like record extension and polymorphism to modular compositional interpreters. We introduce row theories, a monoidal generalization of row types, giving a general account of record concatenation and projection (dually, variant injection and branching). We realize them via qualified types, abstracting the interpretation of records and variants over different row theories. Our approach naturally types terms untypable in other systems of extensible data types, while maintaining strong metatheoretic properties, such as coherence and principal types. Evidence for type qualifiers has computational content, determining the implementation of record and variant operations; we demonstrate this in giving a modular translation from our calculus, instantiated with various row theories, to polymorphic λ -calculus

    A completely unique account of enumeration

    Get PDF
    How can we enumerate the inhabitants of an algebraic datatype? This paper explores a datatype generic solution that works for all regular types and indexed families. The enumerators presented here are provably both complete and unique—they will eventually produce every value exactly once—and fair—they avoid bias when composing enumerators. Finally, these enumerators memoise previously enumerated values whenever possible, thereby avoiding repeatedly recomputing recursive results

    Versatile event correlation with algebraic effects

    Get PDF
    We present the first language design to uniformly express variants of n -way joins over asynchronous event streams from different domains, e.g., stream-relational algebra, event processing, reactive and concurrent programming. We model asynchronous reactive programs and joins in direct style, on top of algebraic effects and handlers. Effect handlers act as modular interpreters of event notifications, enabling fine-grained control abstractions and customizable event matching. Join variants can be considered as cartesian product computations with ”degenerate” control flow, such that unnecessary tuples are not materialized a priori. Based on this computational interpretation, we decompose joins into a generic, naive enumeration procedure of the cartesian product, plus variant-specific extensions, represented in terms of user-supplied effect handlers. Our microbenchmarks validate that this extensible design avoids needless materialization. Alongside a formal semantics for joining and prototypes in Koka and multicore OCaml, we contribute a systematic comparison of the covered domains and features. ERC, Advanced Grant No. 321217 ERC, Consolidator Grant No. 617805 DFG, SFB 1053 DFG, SA 2918/2-

    On Induction, Coinduction and Equality in Martin-L\uf6f and Homotopy Type Theory

    Get PDF
    Martin L\uf6f Type Theory, having put computation at the center of logicalreasoning, has been shown to be an effective foundation for proof assistants,with applications both in computer science and constructive mathematics. Oneambition though is for MLTT to also double as a practical general purposeprogramming language. Datatypes in type theory come with an induction orcoinduction principle which gives a precise and concise specification of theirinterface. However, such principles can interfere with how we would like toexpress our programs. In this thesis, we investigate more flexible alternativesto direct uses of the (co)induction principles.As a first contribution, we consider the n-truncation of a type in Homo-topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncatedtypes instead of n-truncated ones, assuming extra conditions on the underlyingfunction.As a second contribution, we improve on type-based criteria for terminationand productivity. By augmenting the types with well-foundedness information,such criteria allow function definitions in a style closer to general recursion.We consider two criteria: guarded types, and sized types.Guarded types introduce a modality ”later” to guard the availability ofrecursive calls provided by a general fixed-point combinator. In Guarded Cu-bical Type Theory we equip the fixed-point combinator with a propositionalequality to its one-step unfolding, instead of a definitional equality that wouldbreak normalization. The notion of path from Cubical Type Theory allows usto do so without losing canonicity or decidability of conversion.Sized types, on the other hand, explicitly index datatypes with size boundson the height or depth of their elements. The sizes however can get in theway of the reasoning principles we expect. Our approach is to introduce newquantifiers for ”irrelevant” size quantification. We present a type theory withparametric quantifiers where irrelevance arises as a “free theorem”. We alsodevelop a conversion checking algorithm for a more specific theory where thenew quantifiers are restricted to sizes.Finally, our third contribution is about the operational semantics of typetheory. For the extensions above we would like to devise a practical conversionchecking algorithm suitable for integration into a proof assistant. We formal-ized the correctness of such an algorithm for a small but challenging corecalculus, proving that conversion is decidable. We expect this development toform a good basis to verify more complex theories.The ideas discussed in this thesis are already influencing the developmentof Agda, a proof assistant based on type theory

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    Verified programming with explicit coercions

    Get PDF
    Type systems have proved to be a powerful means of specifying and proving important program invariants. In dependently typed programming languages types can depend on values and hence express arbitrarily complicated propositions and their machine checkable proofs. The type-based approach to program specification allows for the programmer to not only transcribe their intentions, but arranges for their direct involvement in the proving process, thus aiding the machine in its attempt to satisfy difficult obligations. In this thesis we develop a series of patterns for programming in a correct-by-construction style making use of constraints and coercions to prove properties within a dependently typed host. This allows for the development of a verified, kernel which can be built upon using the host system features. In particular this should allow for the development of “tactics” or semiautomated solvers invoked when coercing types all within a single language. The efficacy of this approach is given by the development of a system of expressions indexed by their, exposing a case analysis feature serving to generate value constraints. These constraints are directly reflected into the host allowing for their involvement in the type-checking process. A motivating use case of this design shows how a term’s semantic index information admits an exact, formalized cost analysis amenable to reasoning within the host. Finally we show how such a system is used to identify unreachable dead-code, trivially admitting the design and verification of an SSA style compiler with this optimization. We think such a design of explicitly proving the local correctness of type-transformations in the presence of accumulated constraints can form the basis of a flexible language in concert with a variety of trusted solver

    Building the knowledge base for environmental action and sustainability

    Get PDF
    corecore