458 research outputs found

    Analysis of RSVP-TE graceful restart

    Get PDF
    GMPLS is viewed as an attractive intelligent control plane for different network technologies and graceful restart is a key technique in ensuring this control plane is resilient and able to recover adequately from faults. This paper analyses the graceful restart mechanism proposed for a key GMPLS protocol, RSVP-TE. A novel analytical model, which may be readily adapted to study other protocols, is developed. This model allows the efficacy of graceful restart to be evaluated in a number of scenarios. It is found that, unsurprisingly, increasing control message loss and increasing the number of data plane connections both increased the time to complete recovery. It was also discovered that a threshold exists beyond which a relatively small change in the control message loss probability causes a disproportionately large increase in the time to complete recovery. The interesting findings in this work suggest that the performance of graceful restart is worthy of further investigation, with emphasis being placed on exploring procedures to optimise the performance of graceful restart

    The role of Artificial Intelligence and distributed computing in IoT applications

    Get PDF
    [EN]The exchange of ideas between scientists and technicians, from both academic and business areas, is essential in order to ease the development of systems which can meet the demands of today’s society. Technology transfer in this field is still a challenge and, for that reason, this type of contributions are notably considered in this compilation. This book brings in discussions and publications concerning the development of innovative techniques of IoT complex problems. The technical program focuses both on high quality and diversity, with contributions in well-established and evolving areas of research. Specifically, 10 chapters were submitted to this book. The editors particularly encouraged and welcomed contributions on AI and distributed computing in IoT applications.Financed by regional government of Castilla y León and FEDER funds

    The role of Artificial Intelligence and Distributed computing in IoT applications

    Get PDF
    [ES] La serie «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» contiene publicaciones sobre la teoría y aplicaciones de la computación distribuida y la inteligencia artificial en el Internet de las cosas. Prácticamente todas las disciplinas como la ingeniería, las ciencias naturales, la informática y las ciencias de la información, las TIC, la economía, los negocios, el comercio electrónico, el medio ambiente, la salud y las ciencias de la vida están cubiertas. La lista de temas abarca todas las áreas de los sistemas inteligentes modernos y la informática como: inteligencia computacional, soft computing incluyendo redes neuronales, inteligencia social, inteligencia ambiental, sistemas auto-organizados y adaptativos, computación centrada en el ser humano y centrada en el ser humano, sistemas de recomendación, control inteligente, robótica y mecatrónica, incluida la colaboración entre el ser humano y la máquina, paradigmas basados en el conocimiento, paradigmas de aprendizaje, ética de la máquina, análisis inteligente de datos, gestión del conocimiento, agentes inteligentes, toma de decisiones inteligentes y apoyo, seguridad de la red inteligente, gestión de la confianza, entretenimiento interactivo, inteligencia de la Web y multimedia. Las publicaciones en el marco de «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» son principalmente las actas de seminarios, simposios y conferencias. Abarcan importantes novedades recientes en la materia, tanto de naturaleza fundacional como aplicable. Un importante rasgo característico de la serie es el corto tiempo de publicación. Esto permite una rápida y amplia difusión de los resultados de las investigaciones[EN] The series «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» contains publications on the theory and applications of distributed computing and artificial intelligence in the Internet of Things. Virtually all disciplines such as engineering, natural sciences, computer and information sciences, ICT, economics, business, e-commerce, environment, health and life sciences are covered. The list of topics covers all areas of modern intelligent systems and computer science: computational intelligence, soft computing including neural networks, social intelligence, ambient intelligence, self-organising and adaptive systems, human-centred and people-centred computing, recommendation systems, intelligent control, robotics and mechatronics including human-machine collaboration, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, web intelligence, and multimedia. The publications in the framework of «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» are mainly the proceedings of seminars, symposia and conferences. They cover important recent developments in the field, whether of a foundational or applicable character. An important feature of the series is the short publication time. This allows for the rapid and wide dissemination of research results

    a simulative model of a 5g telco operator network

    Get PDF
    Abstract In the near future, an important milestone for the evolution of wireless technologies will be the deployment of 5G network, having the target of supporting very huge data rate generated by a very high number of devices. One of the main technological enablers in this evolution is the joint SDN/NFV paradigm, defined in the last years to support the softwarization process of the Telco Operator networks. Given the very hard quality of experience (QoE) and quality of service (QoS) requirements in some application scenarios, mainly in terms of end-to-end delay, a challenging activity is to realize tools that can support network architects in performance evaluation and network design. With this in mind, this paper proposes a simulative tool for 5G networks, which is able to capture delay statistics due to both CPU load and transmission link congestions in NFVI-PoP nodes. The model is then applied to a case study to demonstrate how it can be applied for performance evaluation

    Distribution of quantum keys over commercial networks

    Get PDF
    [EN]Modern cryptography – as it was conceived – is under a threat by the development of quantum mechanics applications. The abilities of quantum computers for solving complex mathematical problems, as a strong computational novelty, is the root of that risk. The main challenge is to find commercial exploits of quantum properties and developments, following these directions for both, theoretic and test tube environments. This work proposes a pilot experiment that implements a quantum communication system on a commercial fiber optic network, covering an area of almost 100,000 km2

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    An Enhanced Backbone-Assisted Reliable Framework for Wireless Sensor Networks

    Get PDF
    An extremely reliable source to sink communication is required for most of the contemporary WSN applications especially pertaining to military, healthcare and disaster-recovery. However, due to their intrinsic energy, bandwidth and computational constraints, Wireless Sensor Networks (WSNs) encounter several challenges in reliable source to sink communication. In this paper, we present a novel reliable topology that uses reliable hotlines between sensor gateways to boost the reliability of end-to-end transmissions. This reliable and efficient routing alternative reduces the number of average hops from source to the sink. We prove, with the help of analytical evaluation, that communication using hotlines is considerably more reliable than traditional WSN routing. We use reliability theory to analyze the cost and benefit of adding gateway nodes to a backbone-assisted WSN. However, in hotline assisted routing some scenarios where source and the sink are just a couple of hops away might bring more latency, therefore, we present a Signature Based Routing (SBR) scheme. SBR enables the gateways to make intelligent routing decisions, based upon the derived signature, hence providing lesser end-to-end delay between source to the sink communication. Finally, we evaluate our proposed hotline based topology with the help of a simulation tool and show that the proposed topology provides manifold increase in end-to-end reliability

    A Recommendation-based Proposal for Improving Energy Efficiency in Housing

    Get PDF
    [EN]75% of buildings in the EU are not designed according to any energy efficiency code and around 45%of the world’s energy is used in the residential sector. This is why one of Europe’s biggest energy challenges is to include consumers at the heart of the energy system. The aim of this work is to develop a solution to a problem of such magnitude: to create a system of personalised recommendations to each consumer that contributes to improving the energy efficiency of their home. The data will be obtained from sensorized homes in Salamanca. Some examples of possible recommendations are reducing the temperature of the thermostat, change the time at which the house is ventilated and raise the blinds at a certain time. The system developed is capable of providing these recommendations correctly an-d efficiently

    Windy Rural Collaborative Postmen Problem using ROS as Multi-agent System Architecture

    Get PDF
    [EN]In the last decades the urban areas have grown and as a result the transportation has become an important problem. We are exploring a potential solution for the last mile delivery problem in urban areas in a similar way that internet solves the delivery of information proble

    A new ILP-based p-cycle construction algorithm without candidate cycle enumeration

    Get PDF
    The notion of p-cycle (Preconfigured Protection Cycle) allows capacity efficient schemes to be designed for fast span protection in WDM mesh networks. Conventional p-cycle construction algorithms need to enumerate/pre-select candidate cycles before ILP (Integer Linear Program) can be applied. In this paper, we propose a new algorithm which is only based on ILP. When the required number of p-cycles is not too large, our ILP can generate optimal/suboptimal solutions in reasonable amount of running time. © 2007 IEEE.published_or_final_versio
    corecore