13 research outputs found

    Placing Conditional Disclosure of Secrets in the Communication Complexity Universe

    Get PDF
    In the conditional disclosure of secrets (CDS) problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold n-bit inputs x and y respectively, wish to release a common secret z to Carol (who knows both x and y) if and only if the input (x,y) satisfies some predefined predicate f. Alice and Bob are allowed to send a single message to Carol which may depend on their inputs and some shared randomness, and the goal is to minimize the communication complexity while providing information-theoretic security. Despite the growing interest in this model, very few lower-bounds are known. In this paper, we relate the CDS complexity of a predicate f to its communication complexity under various communication games. For several basic predicates our results yield tight, or almost tight, lower-bounds of Omega(n) or Omega(n^{1-epsilon}), providing an exponential improvement over previous logarithmic lower-bounds. We also define new communication complexity classes that correspond to different variants of the CDS model and study the relations between them and their complements. Notably, we show that allowing for imperfect correctness can significantly reduce communication - a seemingly new phenomenon in the context of information-theoretic cryptography. Finally, our results show that proving explicit super-logarithmic lower-bounds for imperfect CDS protocols is a necessary step towards proving explicit lower-bounds against the class AM, or even AM cap coAM - a well known open problem in the theory of communication complexity. Thus imperfect CDS forms a new minimal class which is placed just beyond the boundaries of the "civilized" part of the communication complexity world for which explicit lower-bounds are known

    Conditional Disclosure of Secrets: Amplification, Closure, Amortization, Lower-bounds, and Separations

    Get PDF
    In the \emph{conditional disclosure of secrets} problem (Gertner et al., J. Comput. Syst. Sci., 2000) Alice and Bob, who hold inputs xx and yy respectively, wish to release a common secret ss to Carol (who knows both xx and yy) if only if the input (x,y)(x,y) satisfies some predefined predicate ff. Alice and Bob are allowed to send a single message to Carol which may depend on their inputs and some joint randomness and the goal is to minimize the communication complexity while providing information-theoretic security. Following Gay, Kerenidis, and Wee (Crypto 2015), we study the communication complexity of CDS protocols and derive the following positive and negative results. 1. *Closure* A CDS for ff can be turned into a CDS for its complement fˉ\bar{f} with only a minor blow-up in complexity. More generally, for a (possibly non-monotone) predicate hh, we obtain a CDS for h(f1,,fm)h(f_1,\ldots,f_m) whose cost is essentially linear in the formula size of hh and polynomial in the CDS complexity of fif_i. 2. *Amplification* It is possible to reduce the privacy and correctness error of a CDS from constant to 2k2^{-k} with a multiplicative overhead of O(k)O(k). Moreover, this overhead can be amortized over kk-bit secrets. 3. *Amortization* Every predicate ff over nn-bit inputs admits a CDS for multi-bit secrets whose amortized communication complexity per secret bit grows linearly with the input length nn for sufficiently long secrets. In contrast, the best known upper-bound for single-bit secrets is exponential in nn. 4. *Lower-bounds* There exists a (non-explicit) predicate ff over nn-bit inputs for which any perfect (single-bit) CDS requires communication of at least Ω(n)\Omega(n). This is an exponential improvement over the previously known Ω(logn)\Omega(\log n) lower-bound. 5. *Separations* There exists an (explicit) predicate whose CDS complexity is exponentially smaller than its randomized communication complexity. This matches a lower-bound of Gay et. al., and, combined with another result of theirs, yields an exponential separation between the communication complexity of linear CDS and non-linear CDS. This is the first provable gap between the communication complexity of linear CDS (which captures most known protocols) and non-linear CDS

    Evaluating Error when Estimating the Loss Probability in a Packet Buffer

    Get PDF
    PhDIn this thesis we explore precision in measurement of buffer overflow and loss probability. We see how buffer overflow probability compares with queuing delay measurements covered in the literature [1]. More specifically, we measure the overflow probability of a packet buffer for various sampling rates to see the effect of sampling rate on the estimation. There are various reasons for measurement in networks; one key context assumed here is Measurement Based Admission Control. We conduct simulation experiments with analytically derived VoIP and bursty traffic parameters,in Matlab, while treating the buffer under consideration as a two-state Markov Chain. We note that estimation error decreases with increase in sampling gap (or in other words precision improves/variance decreases with decrease in sampling rate). We then perform experiments for VoIP and bursty data using NS-2 simulator and record the buffer states generated therein. We see a similar trend of increase in precision with increase in sampling gap. In our simulations, we have mainly considered static traffic passing through the buffer, and we use elastic traffic (TCP) for comparison. We see from our results that that the sampling error becomes constant beyond certain asymptotic level. We thus look into asymptotic error in estimation,for the lowest sampling gap,to establish a lower bound on estimation error for buffer loss probability measurement. We use formulae given in recent literature [2] for computing the experimental and theoretic asymptotic variance of the buffer state traces in our scenarios. We find that the theoretical and experimental asymptotic variance of overflow probability match when sampling a trace of buffer states modelled as a two-state Markov Chain in Matlab. We claim that this is a new approach to computing the lower bound on the measurement of buffer overflow probability, when the buffer states are modelled as a Markov process. Using Markov Chain modelling for buffer overflow we further explore the relationship between sampling rate and accuracy. We find that there is no relationship between sampling gap and bias of estimation. Crucially we go on to show that a more realistic simulation of a packet buffer reveals that the distribution of buffer overflow periods is not always such as to allow simple Markov modelling of the buffer states; while the sojourn periods are exponential for the smaller burst periods, the tail of the distribution does not fit to the same exponential fitting. While our work validates the use of a two-state Markov model for a useful approximation modelling the overflow of a buffer, we have established that earlier work which relies on simple Markovian assumptions will thereby underestimate the error in the measured overflow probabilities

    On Abelian and Homomorphic Secret Sharing Schemes

    Get PDF
    Abelian secret sharing schemes (SSS) are generalization of multi-linear SSS and similar to them, abelian schemes are homomorphic. There are numerous results on linear and multi-linear SSSs in the literature and a few ones on homomorphic SSSs too. Nevertheless, the abelian schemes have not taken that much attention. We present three main results on abelian and homomorphic SSSs in this paper: (1) abelian schemes are more powerful than multi-linear schemes (we achieve a constant factor improvement), (2) the information ratio of dual access structures are the same for the class of abelian schemes, and (3) every ideal homomorphic scheme can be transformed into an ideal multi-linear scheme with the same access structure. Our results on abelian and homomorphic SSSs have been motivated by the following concerns and questions. All known linear rank inequities have been derived using the so-called common information property of random variables [Dougherty, Freiling and Zeger, 2009], and it is an open problem that if common information is complete for deriving all such inequalities (Q1). The common information property has also been used in linear programming to find lower bounds for the information ratio of access structures [Farràs, Kaced, Molleví and Padró, 2018] and it is an open problem that if the method is complete for finding the optimal information ratio for the class of multi-linear schemes (Q2). Also, it was realized by the latter authors that the obtained lower bound does not have a good behavior with respect to duality and it is an open problem that if this behavior is inherent to their method (Q3). Our first result provides a negative answer to Q2. Even though, we are not able to completely answer Q1 and Q3, we have some observations about them

    Monitoring, Modeling, and Hybrid Simulation An Integrated Bayesian-based Approach to High-fidelity Fragility Analysis

    Get PDF
    Fragility functions are one of the key technical ingredients in seismic risk assessment. The derivation of fragility functions has been extensively studied in the past; however, large uncertainties still exist, mainly due to limited collaboration between the interdependent components involved in the course of fragility estimation. This research aims to develop a systematic Bayesian-based framework to estimate high-fidelity fragility functions by integrating monitoring, modeling, and hybrid simulation, with the final goal of improving the accuracy of seismic risk assessment to support both pre- and post-disaster decision-making. In particular, this research addresses the following five aspects of the problem: (1) monitoring with wireless smart sensor networks to facilitate efficient and accurate pre- and post-disaster data collection, (2) new modeling techniques including innovative system identification strategies and model updating to enable accurate structural modeling, (3) hybrid simulation as an advanced numerical experimental simulation tool to generate highly realistic and accurate response data for structures subject to earthquakes, (4) Bayesian-updating as a systematic way of incorporating hybrid simulation data to generate composite fragility functions with higher fidelity, and 5) the implementation of an integrated fragility analysis approach as a part of a seismic risk assessment framework. This research not only delivers an extensible and scalable framework for high fidelity fragility analysis and reliable seismic risk assessment, but also provides advances in wireless smart sensor networks, system identification, and pseudo-dynamic testing in civil engineering applications.Financial support for this research was provided in part by the National Science Foundation under NSF Grants No. CMS-060043, CMMI-0724172, CMMI-0928886, and CNS-1035573.Ope

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    A Holmes and Doyle Bibliography, Volume 6: Periodical Articles, Subject Listing, By De Waal Category

    Get PDF
    This bibliography is a work in progress. It attempts to update Ronald B. De Waal’s comprehensive bibliography, The Universal Sherlock Holmes, but does not claim to be exhaustive in content. New works are continually discovered and added to this bibliography. Readers and researchers are invited to suggest additional content. Volume 6 presents the periodical literature arranged by subject categories (as originally devised for the De Waal bibliography and slightly modified here)

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI

    Anales del XIII Congreso Argentino de Ciencias de la Computación (CACIC)

    Get PDF
    Contenido: Arquitecturas de computadoras Sistemas embebidos Arquitecturas orientadas a servicios (SOA) Redes de comunicaciones Redes heterogéneas Redes de Avanzada Redes inalámbricas Redes móviles Redes activas Administración y monitoreo de redes y servicios Calidad de Servicio (QoS, SLAs) Seguridad informática y autenticación, privacidad Infraestructura para firma digital y certificados digitales Análisis y detección de vulnerabilidades Sistemas operativos Sistemas P2P Middleware Infraestructura para grid Servicios de integración (Web Services o .Net)Red de Universidades con Carreras en Informática (RedUNCI
    corecore