40 research outputs found

    Effective integrations of constraint programming, integer programming and local search for two combinatorial optimisation problems

    Get PDF
    This thesis focuses on the construction of effective and efficient hybrid methods based on the integrations of Constraint Programming (CP), Integer Programming (IP) and local search (LS) to tackle two combinatorial optimisation problems from different application areas: the nurse rostering problems and the portfolio selection problems. The principle of designing hybrid methods in this thesis can be described as: for the combinatorial problems to be solved, the properties of the problems are investigated firstly and the problems are decomposed accordingly in certain ways; then the suitable solution techniques are integrated to solve the problem based on the properties of substructures/subproblems by taking the advantage of each technique. For the over-constrained nurse rostering problems with a large set of complex constraints, the problems are first decomposed by constraint. That is, only certain selected set of constraints is considered to generate feasible solutions at the first stage. Then the rest of constraints are tackled by a second stage local search method. Therefore, the hybrid methods based on this constraint decomposition can be represented by a two-stage framework “feasible solution + improvement”. Two integration methods are proposed and investigated under this framework. In the first integration method, namely a hybrid CP with Variable Neighourhood Search (VNS) approach, the generation of feasible initial solutions relies on the CP while the improvement of initial solutions is gained by a simple VNS in the second stage. In the second integration method, namely a constraint-directed local search, the local search is enhanced by using the information of constraints. The experimental results demonstrate the effectiveness of these hybrid approaches. Based on another decomposition method, Dantzig-Wolfe decomposition, in the third integration method, a CP based column generation, integrates the feasibility reasoning of CP with the relaxation and optimality reasoning of Linear Programming. The experimental results demonstrate the effectiveness of the methods as well as the knowledge of the quality of the solution. For the portfolio selection problems, two integration methods, which integrate Branch-and-Bound algorithm with heuristic search, are proposed and investigated. In layered Branch-and-Bound algorithm, the problem is decomposed into the subsets of variables which are considered at certain layers in the search tree according to their different features. Node selection heuristics, and branching rules, etc. are tailored to the individual layers, which speed up the search to the optimal solution in a given time limit. In local search branching Branch-and-Bound algorithm, the idea of local search is applied as the branching rule of Branch-and-Bound. The local search branching is applied to generate a sequence of subproblems. The procedure for solving these subproblems is accelerated by means of the solution information reusing. This close integration between local search and Branch-and-Bound improves the efficiency of the Branch-and-Bound algorithm according to the experimental results. The hybrid approaches benefit from each component which is selected according to the properties of the decomposed problems. The effectiveness and efficiency of all the hybrid approaches to the two application problems developed in this thesis are demonstrated. The idea of designing appropriate components in hybrid approach concerning properties of subproblems is a promising methodology with extensive potential applications in other real-world combinatorial optimisation problems

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Effective integrations of constraint programming, integer programming and local search for two combinatorial optimisation problems

    Get PDF
    This thesis focuses on the construction of effective and efficient hybrid methods based on the integrations of Constraint Programming (CP), Integer Programming (IP) and local search (LS) to tackle two combinatorial optimisation problems from different application areas: the nurse rostering problems and the portfolio selection problems. The principle of designing hybrid methods in this thesis can be described as: for the combinatorial problems to be solved, the properties of the problems are investigated firstly and the problems are decomposed accordingly in certain ways; then the suitable solution techniques are integrated to solve the problem based on the properties of substructures/subproblems by taking the advantage of each technique. For the over-constrained nurse rostering problems with a large set of complex constraints, the problems are first decomposed by constraint. That is, only certain selected set of constraints is considered to generate feasible solutions at the first stage. Then the rest of constraints are tackled by a second stage local search method. Therefore, the hybrid methods based on this constraint decomposition can be represented by a two-stage framework “feasible solution + improvement”. Two integration methods are proposed and investigated under this framework. In the first integration method, namely a hybrid CP with Variable Neighourhood Search (VNS) approach, the generation of feasible initial solutions relies on the CP while the improvement of initial solutions is gained by a simple VNS in the second stage. In the second integration method, namely a constraint-directed local search, the local search is enhanced by using the information of constraints. The experimental results demonstrate the effectiveness of these hybrid approaches. Based on another decomposition method, Dantzig-Wolfe decomposition, in the third integration method, a CP based column generation, integrates the feasibility reasoning of CP with the relaxation and optimality reasoning of Linear Programming. The experimental results demonstrate the effectiveness of the methods as well as the knowledge of the quality of the solution. For the portfolio selection problems, two integration methods, which integrate Branch-and-Bound algorithm with heuristic search, are proposed and investigated. In layered Branch-and-Bound algorithm, the problem is decomposed into the subsets of variables which are considered at certain layers in the search tree according to their different features. Node selection heuristics, and branching rules, etc. are tailored to the individual layers, which speed up the search to the optimal solution in a given time limit. In local search branching Branch-and-Bound algorithm, the idea of local search is applied as the branching rule of Branch-and-Bound. The local search branching is applied to generate a sequence of subproblems. The procedure for solving these subproblems is accelerated by means of the solution information reusing. This close integration between local search and Branch-and-Bound improves the efficiency of the Branch-and-Bound algorithm according to the experimental results. The hybrid approaches benefit from each component which is selected according to the properties of the decomposed problems. The effectiveness and efficiency of all the hybrid approaches to the two application problems developed in this thesis are demonstrated. The idea of designing appropriate components in hybrid approach concerning properties of subproblems is a promising methodology with extensive potential applications in other real-world combinatorial optimisation problems

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Applications of Power Electronics:Volume 2

    Get PDF

    ISCHE 42 - Looking from Above and Below:Rethinking the Social in the History of Education – Book of Abstracts

    Get PDF

    ISCHE 42 - Looking from Above and Below:Rethinking the Social in the History of Education – Book of Abstracts

    Get PDF
    corecore