851 research outputs found

    Transaction Propagation on Permissionless Blockchains: Incentive and Routing Mechanisms

    Full text link
    Existing permissionless blockchain solutions rely on peer-to-peer propagation mechanisms, where nodes in a network transfer transaction they received to their neighbors. Unfortunately, there is no explicit incentive for such transaction propagation. Therefore, existing propagation mechanisms will not be sustainable in a fully decentralized blockchain with rational nodes. In this work, we formally define the problem of incentivizing nodes for transaction propagation. We propose an incentive mechanism where each node involved in the propagation of a transaction receives a share of the transaction fee. We also show that our proposal is Sybil-proof. Furthermore, we combine the incentive mechanism with smart routing to reduce the communication and storage costs at the same time. The proposed routing mechanism reduces the redundant transaction propagation from the size of the network to a factor of average shortest path length. The routing mechanism is built upon a specific type of consensus protocol where the round leader who creates the transaction block is known in advance. Note that our routing mechanism is a generic one and can be adopted independently from the incentive mechanism.Comment: 2018 Crypto Valley Conference on Blockchain Technolog

    The Limitations of Optimization from Samples

    Full text link
    In this paper we consider the following question: can we optimize objective functions from the training data we use to learn them? We formalize this question through a novel framework we call optimization from samples (OPS). In OPS, we are given sampled values of a function drawn from some distribution and the objective is to optimize the function under some constraint. While there are interesting classes of functions that can be optimized from samples, our main result is an impossibility. We show that there are classes of functions which are statistically learnable and optimizable, but for which no reasonable approximation for optimization from samples is achievable. In particular, our main result shows that there is no constant factor approximation for maximizing coverage functions under a cardinality constraint using polynomially-many samples drawn from any distribution. We also show tight approximation guarantees for maximization under a cardinality constraint of several interesting classes of functions including unit-demand, additive, and general monotone submodular functions, as well as a constant factor approximation for monotone submodular functions with bounded curvature

    Tit-for-Tat Dynamics and Market Volatility

    Full text link
    We study the tit-for-tat dynamic in production markets, where each player can make a good given as input various amounts of goods in the system. In the tit-for-tat dynamic, each player allocates its good to its neighbors in fractions proportional to how much they contributed in its production in the last round. Tit-for-tat does not use money and was studied before in pure exchange settings. We study the phase transitions of this dynamic when the valuations are symmetric (i.e. each good has the same worth to everyone) by characterizing which players grow or vanish over time. We also study how the fractions of their investments evolve in the long term, showing that in the limit the players invest only on players with optimal production capacity

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Budget-feasible mechanism design for non-monotone submodular objectives: Offline and online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)-approximation mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Since the introduction of the problem by Singer [40], obtaining efficient mechanisms for objectives that go beyond the class of monotone submodular functions has been elusive. Prior to our work, the only O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where-crucially-the agents are not ordered according to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present, e.g., at most k agents can be selected. We obtain O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guaran

    Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design

    Full text link
    We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results

    Letters from the War of Ecosystems – An Analysis of Independent Software Vendors in Mobile Application Marketplaces

    Get PDF
    The recent emergence of a new generation of mobile application marketplaces has changed the business in the mobile ecosystems. The marketplaces have gathered over a million applications by hundreds of thousands of application developers and publishers. Thus, software ecosystems—consisting of developers, consumers and the orchestrator—have emerged as a part of the mobile ecosystem. This dissertation addresses the new challenges faced by mobile application developers in the new ecosystems through empirical methods. By using the theories of two-sided markets and business ecosystems as the basis, the thesis assesses monetization and value creation in the market as well as the impact of electronic Word-of-Mouth (eWOM) and developer multihoming— i. e. contributing for more than one platform—in the ecosystems. The data for the study was collected with web crawling from the three biggest marketplaces: Apple App Store, Google Play and Windows Phone Store. The dissertation consists of six individual articles. The results of the studies show a gap in monetization among the studied applications, while a majority of applications are produced by small or micro-enterprises. The study finds only weak support for the impact of eWOM on the sales of an application in the studied ecosystem. Finally, the study reveals a clear difference in the multi-homing rates between the top application developers and the rest. This has, as discussed in the thesis, an impact on the future market analyses—it seems that the smart device market can sustain several parallel application marketplaces.Muutama vuosi sitten julkistetut uuden sukupolven mobiilisovellusten kauppapaikat ovat muuttaneet mobiiliekosysteemien liiketoimintadynamiikkaa. Nämä uudet markkinapaikat ovat jo onnistuneet houkuttelemaan yli miljoona sovellusta sadoilta tuhansilta ohjelmistokehittäjiltä. Nämä kehittäjät yhdessä markkinapaikan organisoijan sekä loppukäyttäjien kanssa ovat muodostaneet ohjelmistoekosysteemin osaksi laajempaa mobiiliekosysteemiä. Tässä väitöskirjassa tarkastellaan mobiilisovellusten kehittäjien uudenlaisilla kauppapaikoilla kohtaamia haasteita empiiristen tutkimusmenetelmien kautta. Väitöskirjassa arvioidaan sovellusten monetisaatiota ja arvonluontia sekä verkon asiakasarviointien (engl. electronicWord-of-Mouth, eWOM) ja kehittäjien moniliittymisen (engl. multi-homing) — kehittäjä on sitoutunut useammalle kuin yhdelle ekosysteemille — vaikutuksia ekosysteemissä. Työn teoreettinen tausta rakentuu kaksipuolisten markkinapaikkojen ja liiketoimintaekosysteemien päälle. Tutkimuksen aineisto on kerätty kolmelta suurimmalta mobiilisovellusmarkkinapaikalta: Apple App Storesta, Google Playstä ja Windows Phone Storesta. Tämä artikkeliväitöskirja koostuu kuudesta itsenäisestä tutkimuskäsikirjoituksesta. Artikkelien tulokset osoittavat puutteita monetisaatiossa tutkittujen sovellusten joukossa. Merkittävä osa tarkastelluista sovelluksista on pienten yritysten tai yksittäisten kehittäjien julkaisemia. Tutkimuksessa löydettiin vain heikkoa tukea eWOM:in positiiviselle vaikutukselle sovellusten myyntimäärissä. Työssä myös osoitetaan merkittävä ero menestyneimpien sovelluskehittäjien sekä muiden kehittäjien moniliittymiskäyttäytymisen välillä. Tällä havainnolla on merkitystä tuleville markkina-analyyseille ja sen vaikutuksia on käsitelty työssä. Tulokset esimerkiksi viittaavat siihen, että markkinat pystyisivät ylläpitämään useita kilpailevia kauppapaikkoja.Siirretty Doriast
    • …
    corecore