4,432 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Live Social Semantics

    Get PDF
    Social interactions are one of the key factors to the success of conferences and similar community gatherings. This paper describes a novel application that integrates data from the semantic web, online social networks, and a real-world contact sensing platform. This application was successfully deployed at ESWC09, and actively used by 139 people. Personal profiles of the participants were automatically generated using several Web~2.0 systems and semantic academic data sources, and integrated in real-time with face-to-face contact networks derived from wearable sensors. Integration of all these heterogeneous data layers made it possible to offer various services to conference attendees to enhance their social experience such as visualisation of contact data, and a site to explore and connect with other participants. This paper describes the architecture of the application, the services we provided, and the results we achieved in this deployment

    Integration Protocol Student Academic Information to Campus RFID Gate Pass System

    Get PDF
    Nowadays, security is a part that consent by many institution including academic for example in University campus, some  of  campus  have  been  implement  automatic  system  in campus area to control visitor to enter University also for   the staffs and students, but the system is in standalone with introduce new gate pass. Most of University has been use Information Technology (IT) in application for academic system such as student information, registration, results information, etc. In this paper discuss on integration of student information to gate pass system then do not require new card or pass for every student to enter campus area. Gate pass system is required information to match to database that who allow entering to campus, normally a new database is create for the system. In this case, University has student and staff database including lecturer, thus to be efficient the data in existing database can be use and integration using protocol that gate pass system give a command to database as request then verification of those data. Currently, student database stored in server room and the place far away from gate pass system, in order to make it transaction faster for visitor to enter then a mini database is setup onsite of gate system, but periodic updating is require or every new update in database. Results shows, database stored in student information system is more than 30,000 number of student and transaction time is less than 1 second and in average cycle time is 5.5 seconds for motorcycle lane and 7 seconds for car, that mean time for visitor to access gate pass system for entry campus is most reasonable

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing

    Smart Technologies for Environmental Safety and Knowledge Enhancement in Intermodal Transport

    Get PDF
    International concerns about security in transport systems are leading to a new international regulation in this field. This introduces new requirements for operators and authorities as well as it opens new challenges, in particular when referred to seaports and maritime transport in the Mediterranean area, where many seaport terminals and infrastructures are affected by a noteworthy technological divide from North European contexts. In such contexts, the adoption of the new regulations can represent the right chance for upgrading the local operative standards, increasing latu sensu the quality of maritime transport performances, while conferring a greater level to security and safety checks. This paper explores the chances for increasing the level of Mediterranean seaport competitiveness allowed by technological innovations in transport systems, both in operations and organization of these infrastructures. The aim of the work is to study the effects of the adoption of technological solutions such as wireless communications and radiofrequency identification on the competitiveness of Mediterranean seaport infrastructures. Technological solutions designed to identify good items help operators in organizing activities in terminals and make maritime transport faster in delivering goods, by cutting the handling time and costs in seaport terminals. Seaports that adopt this kind of technologies, and the surrounding economic areas connected to seaports, have a greater attractiveness on shipping companies and operators, since they allow faster handling activities and easier checks on goods. Besides, the analysis of direct and indirect effects of the use of such technologies specifically focuses on the contribution that the use of these solutions gives in ensuring higher security levels, by increasing the level of information and knowledge associated to goods. The different types of security provided (e.g. for people, environment and goods) and the extreme flexibility of the technologies involved give the overall worth of the challenge. It seems to be a great chance of growth for the Mediterranean area, more than a mere compliance to the international security regulations.

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Methodology for Testing RFID Applications

    Get PDF
    Radio Frequency Identification (RFID) is a promising technology for process automation and beyond that capable of identifying objects without the need for a line-of-sight. However, the trend towards automatic identification of objects also increases the demand for high quality RFID applications. Therefore, research on testing RFID systems and methodical approaches for testing are needed. This thesis presents a novel methodology for the system level test of RFID applications. The approach called ITERA, allows for the automatic generation of tests, defines a semantic model of the RFID system and provides a test environment for RFID applications. The method introduced can be used to gradually transform use cases into a semi-formal test specification. Test cases are then systematically generated, in order to execute them in the test environment. It applies the principle of model based testing from a black-box perspective in combination with a virtual environment for automatic test execution. The presence of RFID tags in an area, monitored by an RFID reader, can be modelled by time-based sets using set-theory and discrete events. Furthermore, the proposed description and semantics can be used to specify RFID systems and their applications, which might also be used for other purposes than testing. The approach uses the Unified Modelling Language to model the characteristics of the system under test. Based on the ITERA meta model test execution paths are extracted directly from activity diagrams and RFID specific test cases are generated. The approach introduced in this thesis allows to reduce the efforts for RFID application testing by systematically generating test cases and the automatic test execution. In combination with meta model and by considering additional parameters, like unreliability factors, it not only satisfies functional testing aspects, but also increases the confidence in the robustness of the tested application. Mixed with the instantly available virtual readers, it has the potential to speed up the development process and decrease the costs - even during the early development phases. ITERA can be used for highly automated testing, reproducible tests and because of the instantly available readers, even before the real environment is deployed. Furthermore, the total control of the RFID environment enables to test applications which might be difficult to test manually. This thesis will explain the motivation and objectives of this new RFID application test methodology. Based on a RFID system analysis it proposes a practical solution on the identified issues. Further, it gives a literature review on testing fundamentals, model based test case generation, the typical components of a RFID system and RFID standards used in industry.Integrative Test-Methodology for RFID Applications (ITERA) - Project: Eurostars!5516 ITERA, FKZ 01QE1105

    RFID Technology in Intelligent Tracking Systems in Construction Waste Logistics Using Optimisation Techniques

    Get PDF
    Construction waste disposal is an urgent issue for protecting our environment. This paper proposes a waste management system and illustrates the work process using plasterboard waste as an example, which creates a hazardous gas when land filled with household waste, and for which the recycling rate is less than 10% in the UK. The proposed system integrates RFID technology, Rule-Based Reasoning, Ant Colony optimization and knowledge technology for auditing and tracking plasterboard waste, guiding the operation staff, arranging vehicles, schedule planning, and also provides evidence to verify its disposal. It h relies on RFID equipment for collecting logistical data and uses digital imaging equipment to give further evidence; the reasoning core in the third layer is responsible for generating schedules and route plans and guidance, and the last layer delivers the result to inform users. The paper firstly introduces the current plasterboard disposal situation and addresses the logistical problem that is now the main barrier to a higher recycling rate, followed by discussion of the proposed system in terms of both system level structure and process structure. And finally, an example scenario will be given to illustrate the system’s utilization
    corecore