10 research outputs found

    Procedural content generation for games

    Full text link
    Virtual worlds play an increasingly important role in game development today. Whether in the entertainment industry, education, collaboration or data visualization - virtual space offers a freely definable environment that can be adapted to any purpose. Nevertheless, the creation of complex worlds is time-consuming and cost-intensive. A classic example for the use of a virtual world is a driving simulator where learner drivers can test their skills. The goal of the generation process is to model a realistic city that is large enough to move around for a long time without constantly passing places that have already been seen. Streets must be realistically modeled, have intersections, represent highways and country roads and create an image through buildings that create the greatest possible immersion in the virtual world. But there is still a lack of life. Pedestrians have to populate the streets in large numbers, other cars have to take part in the traffic, and a driving instructor has to sit next to the learner driver, commenting on the actions and chatting away on long journeys. In short, the effort to model such a world by hand would be immense. This thesis deals with different approaches to generate digital content for virtual worlds procedurally i.e., algorithmically. In the first part of this thesis, virtual, three-dimensional road networks are generated using a pre-defined network graph. The nodes in the graph can be generated procedurally or randomly or can be imported from open data platforms, e.g., from OpenStreetMaps (OSM). The automatic detection of intersections makes the generation flexible. The textures used for roads and intersections are constructed from prefabricated sprites whenever possible, or, in the case of a very individual construction, are newly generated during generation. The ability to create multi-lane roads gives the virtual cities a higher degree of realism. The interstices of the road network usually contain buildings, industrial areas, common areas or agricultural land. Once these so-called parcels have been identified, they can be populated with precisely these contents. In this dissertation we focus on accessible residential buildings. The second part of this thesis discusses a novel method of building generation that allows to procedurally create walk-in, multi-storey buildings. The proceeding of simple mesh generation as shown in the road network generation is extended by rules and constraints that allow a flexible floor planning and guarantee a connection of all rooms by a common corridor per floor and a staircase. Since a cityscape is usually characterised by different building shapes, the generation can be parameterized with regard to texturing, roof design, number of floors, and window and door layout. In order to ensure performance when rendering the city, each building is generated in three levels of detail. The lowest level only shows the outer walls, the highest level shows the interior rooms including stairs, doors and window frames. Once the environment is created in a way that allows the player a certain immersion, the game world has to be filled with life. Thus, the third part of this thesis discusses the procedural creation of stories for games based on pre-trained language models. The focus here is on an interactive, controlled way of playing, in which the player can interact with the objects, persons and places of the story and influence the plot. Actions generated from the entities of the previous section of the story should give a feeling of a prepared story, but always ensure the greatest possible flexibility of course. The controlled use of places, people and objects in the player's inventory allows a porting to a three-dimensional game world as well as the gameplay in the form of a text adventure. All methods for creating digital content presented in this thesis were fully implemented and evaluated with respect to usability and performance

    Proceedings, MSVSCC 2015

    Get PDF
    The Virginia Modeling, Analysis and Simulation Center (VMASC) of Old Dominion University hosted the 2015 Modeling, Simulation, & Visualization Student capstone Conference on April 16th. The Capstone Conference features students in Modeling and Simulation, undergraduates and graduate degree programs, and fields from many colleges and/or universities. Students present their research to an audience of fellow students, faculty, judges, and other distinguished guests. For the students, these presentations afford them the opportunity to impart their innovative research to members of the M&S community from academic, industry, and government backgrounds. Also participating in the conference are faculty and judges who have volunteered their time to impart direct support to their students’ research, facilitate the various conference tracks, serve as judges for each of the tracks, and provide overall assistance to this conference. 2015 marks the ninth year of the VMASC Capstone Conference for Modeling, Simulation and Visualization. This year our conference attracted a number of fine student written papers and presentations, resulting in a total of 51 research works that were presented. This year’s conference had record attendance thanks to the support from the various different departments at Old Dominion University, other local Universities, and the United States Military Academy, at West Point. We greatly appreciated all of the work and energy that has gone into this year’s conference, it truly was a highly collaborative effort that has resulted in a very successful symposium for the M&S community and all of those involved. Below you will find a brief summary of the best papers and best presentations with some simple statistics of the overall conference contribution. Followed by that is a table of contents that breaks down by conference track category with a copy of each included body of work. Thank you again for your time and your contribution as this conference is designed to continuously evolve and adapt to better suit the authors and M&S supporters. Dr.Yuzhong Shen Graduate Program Director, MSVE Capstone Conference Chair John ShullGraduate Student, MSVE Capstone Conference Student Chai

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants

    Robust and efficient meshfree solid thermo-mechanics simulation of friction stir welding

    Get PDF
    Friction stir welding, FSW, is a solid-state joining method that is ideally suited for welding aluminum alloys. Welding of the aluminum is accomplished by way of a hardened steel tool that rotates and is pushed with great force into the work pieces. Friction between the tool and the aluminum causes heat to be generated, which softens the aluminum, rendering it easy to deform plastically. In recent years, the FSW process has steadily gained interest in various fabrication industries. However, wide spread acceptance has not yet been attained. Some of the main reasons for this are due to the complexity of the process and the capital cost to procure the required welding equipment and infrastructure. To date, little attention has been paid towards finding optimal process parameters that will increase the economic viability of the FSW process, thus offsetting the high initial investment most. In this research project, a robust and efficient numerical simulation code called SPHriction-3D is developed that can be used to find optimal FSW process parameters. The numerical method is meshfree, allowing for all of the phases of the FSW process to be simulated with a phenomenological approach. The dissertation starts with a focus on the current state of art. Next an in-depth development of the proposed meshfree formulation is presented. Then, the emphasis turns towards the presentation of various test cases along with experimental validation (the focus is on temperature, defects, and tool forces). The remainder of the thesis is dedicated to the development of a robust approach to find the optimal weld quality, and the associated tool rpm and advancing speed. The presented results are of engineering precision and are obtained with low calculation times (hours as opposed to days or weeks). This is possible, since the meshfree code is developed to run in parallel entirely on the GPU. The overall outcome is a cutting edge simulation approach for the entire FSW process. Le soudage par friction malaxage, SFM, est une mĂ©thode idĂ©ale pour relier ensemble des piĂšces en aluminium. Lors du procĂ©dĂ©, un outil en acier trĂšs dur tourne Ă  haute vitesse et est presser dans les plaques avec beaucoup de force. L’outil frotte sur les plaques et gĂ©nĂšre la chaleur, ce qui ramollie l’aluminium, ceci le rendant plus facile Ă  dĂ©formĂ© mĂ©caniquement. RĂ©cemment, le SFM a connu une croissance de reconnaissance important, par contre, l’industrie ne l’as pas encore adoptĂ© unilatĂ©ralement. Il existe encore beaucoup de terrain Ă  dĂ©fricher avant de bien comprendre comment les paramĂštres du procĂ©dĂ© font effet sur la qualitĂ© de la soudure. Dans ce travail, on prĂ©sente une approche de simulation numĂ©rique sans maillage pour le SFM. Le code dĂ©veloppĂ© est capable de prendre en considĂ©ration des grandes dĂ©formations plastiques, le ramollissement de l’aluminium avec la tempĂ©rature, et la condition de frottement complexe. Cette mĂ©thode permet de simulĂ© tous les phases du procĂ©dĂ© SFM dans une seule modĂšle. La thĂšse commence avec un mis en contexte de l’état actuel de la simulation numĂ©rique du SFM. Une fois la mĂ©thodologie de simulation sans maillage prĂ©sentĂ©, la thĂšse concentre sur diffĂ©rents cas de vĂ©rification et validation. Finalement, un travail d’optimisation des paramĂštres du procĂ©dĂ© est rĂ©alisĂ© avec le code numĂ©rique. La mĂ©thode de simulation prĂ©sentĂ©e s’agit d’une approche efficace et robuste, ce qui le rend un outil de conception valable pour les ingĂ©nieurs qui travaille dans le domaine de SFM

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    Cognitive Foundations for Visual Analytics

    Full text link
    corecore