1,360 research outputs found

    Dynamically Adaptive Procedural Generation of Dungeons

    Get PDF

    Progressive Content Generation Based on Cyclic Graph for Generate Dungeon

    Get PDF
    Dungeon is level in game consisting collection of rooms and doors with obstacles inside. To make good level, takes a lot of time. With Procedural Content Generation (PCG), dungeons can be created automatically. One of the approaches in PCG to create levels is progressive. Progressive approach produces timeline as representation of the interactions in the game. Timeline representation that is in the form of one straight line is good for endless runner, but for dungeon, the levels are linear. In this research, the timeline is changed to cyclic graph. Cyclic graph is formed using graph grammar algorithm. This research aims to build dungeon that has not linear and minimal dead ends. To eliminate linearity in dungeons, branching in dungeons needs to be formed. The steps carried out in this research are designing graph grammar rules, generating population of graphs, evaluating graphs with fitness values, and building dungeons. Four functions are used to determine the fitness value: shortest vertices, average duration, replayability, and variation. Dungeons produced with progressive approach manage to minimize linearity in dungeons. Dungeon formation is very dependent on the rule grammar that forms it. With the evaluation process, linear dungeons resulting from grammar rules can be minimized

    Two-step constructive approaches for dungeon generation

    Get PDF
    This paper presents a two-step generative approach for creating dungeons in the rogue-like puzzle game MiniDungeons 2. Generation is split into two steps, initially producing the architectural layout of the level as its walls and floor tiles, and then furnishing it with game objects representing the player's start and goal position, challenges and rewards. Three layout creators and three furnishers are introduced in this paper, which can be combined in different ways in the two-step generative process for producing diverse dungeons levels. Layout creators generate the floors and walls of a level, while furnishers populate it with monsters, traps, and treasures. We test the generated levels on several expressivity measures, and in simulations with procedural persona agents.peer-reviewe

    Automatic generation of level maps with the do what's possible representation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Automatic generation of level maps is a popular form of automatic content generation. In this study, a recently developed technique employing the do what's possible representation is used to create open-ended level maps. Generation of the map can continue indefinitely, yielding a highly scalable representation. A parameter study is performed to find good parameters for the evolutionary algorithm used to locate high quality map generators. Variations on the technique are presented, demonstrating its versatility, and an algorithmic variant is given that both improves performance and changes the character of maps located. The ability of the map to adapt to different regions where the map is permitted to occupy space are also tested.Final Accepted Versio

    Learning the Designer's Preferences to Drive Evolution

    Full text link
    This paper presents the Designer Preference Model, a data-driven solution that pursues to learn from user generated data in a Quality-Diversity Mixed-Initiative Co-Creativity (QD MI-CC) tool, with the aims of modelling the user's design style to better assess the tool's procedurally generated content with respect to that user's preferences. Through this approach, we aim for increasing the user's agency over the generated content in a way that neither stalls the user-tool reciprocal stimuli loop nor fatigues the user with periodical suggestion handpicking. We describe the details of this novel solution, as well as its implementation in the MI-CC tool the Evolutionary Dungeon Designer. We present and discuss our findings out of the initial tests carried out, spotting the open challenges for this combined line of research that integrates MI-CC with Procedural Content Generation through Machine Learning.Comment: 16 pages, Accepted and to appear in proceedings of the 23rd European Conference on the Applications of Evolutionary and bio-inspired Computation, EvoApplications 202

    Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

    Full text link
    Selective weeding is one of the key challenges in the field of agriculture robotics. To accomplish this task, a farm robot should be able to accurately detect plants and to distinguish them between crop and weeds. Most of the promising state-of-the-art approaches make use of appearance-based models trained on large annotated datasets. Unfortunately, creating large agricultural datasets with pixel-level annotations is an extremely time consuming task, actually penalizing the usage of data-driven techniques. In this paper, we face this problem by proposing a novel and effective approach that aims to dramatically minimize the human intervention needed to train the detection and classification algorithms. The idea is to procedurally generate large synthetic training datasets randomizing the key features of the target environment (i.e., crop and weed species, type of soil, light conditions). More specifically, by tuning these model parameters, and exploiting a few real-world textures, it is possible to render a large amount of realistic views of an artificial agricultural scenario with no effort. The generated data can be directly used to train the model or to supplement real-world images. We validate the proposed methodology by using as testbed a modern deep learning based image segmentation architecture. We compare the classification results obtained using both real and synthetic images as training data. The reported results confirm the effectiveness and the potentiality of our approach.Comment: To appear in IEEE/RSJ IROS 201

    Procedural personas as critics for dungeon generation

    Get PDF
    This paper introduces a constrained optimization method which uses procedural personas to evaluate the playability and quality of evolved dungeon levels. Procedural personas represent archetypical player behaviors, and their controllers have been evolved to maximize a specific utility which drives their decisions. A “baseline” persona evaluates whether a level is playable by testing if it can survive in a worst-case scenario of the playthrough. On the other hand, a Monster Killer persona or a Treasure Collector persona evaluates playable levels based on how many monsters it can kill or how many treasures it can collect, respectively. Results show that the implemented two-population genetic algorithm discovers playable levels quickly and reliably, while the different personas affect the layout, difficulty level and tactical depth of the generated dungeons.The research was supported, in part, by the FP7 ICT project C2Learn (project no: 318480) and by the FP7 Marie Curie CIG project AutoGameDesign (project no: 630665).peer-reviewe
    corecore