715 research outputs found

    Analysis of Design Principles and Requirements for Procedural Rigging of Bipeds and Quadrupeds Characters with Custom Manipulators for Animation

    Full text link
    Character rigging is a process of endowing a character with a set of custom manipulators and controls making it easy to animate by the animators. These controls consist of simple joints, handles, or even separate character selection windows.This research paper present an automated rigging system for quadruped characters with custom controls and manipulators for animation.The full character rigging mechanism is procedurally driven based on various principles and requirements used by the riggers and animators. The automation is achieved initially by creating widgets according to the character type. These widgets then can be customized by the rigger according to the character shape, height and proportion. Then joint locations for each body parts are calculated and widgets are replaced programmatically.Finally a complete and fully operational procedurally generated character control rig is created and attached with the underlying skeletal joints. The functionality and feasibility of the rig was analyzed from various source of actual character motion and a requirements criterion was met. The final rigged character provides an efficient and easy to manipulate control rig with no lagging and at high frame rate.Comment: 21 pages, 24 figures, 4 Algorithms, Journal Pape

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    A framework for human-like behavior in an immersive virtual world

    Get PDF
    Just as readers feel immersed when the story-line adheres to their experiences, users will more easily feel immersed in a virtual environment if the behavior of the characters in that environment adheres to their expectations, based on their life-long observations in the real world. This paper introduces a framework that allows authors to establish natural, human-like behavior, physical interaction and emotional engagement of characters living in a virtual environment. Represented by realistic virtual characters, this framework allows people to feel immersed in an Internet based virtual world in which they can meet and share experiences in a natural way as they can meet and share experiences in real life. Rather than just being visualized in a 3D space, the virtual characters (autonomous agents as well as avatars representing users) in the immersive environment facilitate social interaction and multi-party collaboration, mixing virtual with real

    A survey on human performance capture and animation

    Get PDF
    With the rapid development of computing technology, three-dimensional (3D) human body models and their dynamic motions are widely used in the digital entertainment industry. Human perfor- mance mainly involves human body shapes and motions. Key research problems include how to capture and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical e�ects. In this survey, according to main research directions of human body performance capture and animation, we summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim- ulation, and further discuss future research problems and directions. We hope this will be helpful for readers to have a comprehensive understanding of human performance capture and animatio

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Computational intelligent impact force modeling and monitoring in HISLO conditions for maximizing surface mining efficiency, safety, and health

    Get PDF
    Shovel-truck systems are the most widely employed excavation and material handling systems for surface mining operations. During this process, a high-impact shovel loading operation (HISLO) produces large forces that cause extreme whole body vibrations (WBV) that can severely affect the safety and health of haul truck operators. Previously developed solutions have failed to produce satisfactory results as the vibrations at the truck operator seat still exceed the “Extremely Uncomfortable Limits”. This study was a novel effort in developing deep learning-based solution to the HISLO problem. This research study developed a rigorous mathematical model and a 3D virtual simulation model to capture the dynamic impact force for a multi-pass shovel loading operation. The research further involved the application of artificial intelligence and machine learning for implementing the impact force detection in real time. Experimental results showed the impact force magnitudes of 571 kN and 422 kN, for the first and second shovel pass, respectively, through an accurate representation of HISLO with continuous flow modelling using FEA-DEM coupled methodology. The novel ‘DeepImpact’ model, showed an exceptional performance, giving an R2, RMSE, and MAE values of 0.9948, 10.750, and 6.33, respectively, during the model validation. This research was a pioneering effort for advancing knowledge and frontiers in addressing the WBV challenges in deploying heavy mining machinery in safe and healthy large surface mining environments. The smart and intelligent real-time monitoring system from this study, along with process optimization, minimizes the impact force on truck surface, which in turn reduces the level of vibration on the operator, thus leading to a safer and healthier working mining environments --Abstract, page iii
    • …
    corecore