54,083 research outputs found

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    SECaps: A Sequence Enhanced Capsule Model for Charge Prediction

    Full text link
    Automatic charge prediction aims to predict appropriate final charges according to the fact descriptions for a given criminal case. Automatic charge prediction plays a critical role in assisting judges and lawyers to improve the efficiency of legal decisions, and thus has received much attention. Nevertheless, most existing works on automatic charge prediction perform adequately on high-frequency charges but are not yet capable of predicting few-shot charges with limited cases. In this paper, we propose a Sequence Enhanced Capsule model, dubbed as SECaps model, to relieve this problem. Specifically, following the work of capsule networks, we propose the seq-caps layer, which considers sequence information and spatial information of legal texts simultaneously. Then we design a attention residual unit, which provides auxiliary information for charge prediction. In addition, our SECaps model introduces focal loss, which relieves the problem of imbalanced charges. Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4% absolutely considerable improvements under Macro F1 in Criminal-S and Criminal-L respectively. The experimental results consistently demonstrate the superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table

    Automatic Taxonomy Generation - A Use-Case in the Legal Domain

    Get PDF
    A key challenge in the legal domain is the adaptation and representation of the legal knowledge expressed through texts, in order for legal practitioners and researchers to access this information easier and faster to help with compliance related issues. One way to approach this goal is in the form of a taxonomy of legal concepts. While this task usually requires a manual construction of terms and their relations by domain experts, this paper describes a methodology to automatically generate a taxonomy of legal noun concepts. We apply and compare two approaches on a corpus consisting of statutory instruments for UK, Wales, Scotland and Northern Ireland laws.Comment: 9 page

    Unsupervised Keyword Extraction from Polish Legal Texts

    Full text link
    In this work, we present an application of the recently proposed unsupervised keyword extraction algorithm RAKE to a corpus of Polish legal texts from the field of public procurement. RAKE is essentially a language and domain independent method. Its only language-specific input is a stoplist containing a set of non-content words. The performance of the method heavily depends on the choice of such a stoplist, which should be domain adopted. Therefore, we complement RAKE algorithm with an automatic approach to selecting non-content words, which is based on the statistical properties of term distribution

    Recognizing cited facts and principles in legal judgements

    Get PDF
    In common law jurisdictions, legal professionals cite facts and legal principles from precedent cases to support their arguments before the court for their intended outcome in a current case. This practice stems from the doctrine of stare decisis, where cases that have similar facts should receive similar decisions with respect to the principles. It is essential for legal professionals to identify such facts and principles in precedent cases, though this is a highly time intensive task. In this paper, we present studies that demonstrate that human annotators can achieve reasonable agreement on which sentences in legal judgements contain cited facts and principles (respectively, κ=0.65 and κ=0.95 for inter- and intra-annotator agreement). We further demonstrate that it is feasible to automatically annotate sentences containing such legal facts and principles in a supervised machine learning framework based on linguistic features, reporting per category precision and recall figures of between 0.79 and 0.89 for classifying sentences in legal judgements as cited facts, principles or neither using a Bayesian classifier, with an overall κ of 0.72 with the human-annotated gold standard

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    In no uncertain terms : a dataset for monolingual and multilingual automatic term extraction from comparable corpora

    Get PDF
    Automatic term extraction is a productive field of research within natural language processing, but it still faces significant obstacles regarding datasets and evaluation, which require manual term annotation. This is an arduous task, made even more difficult by the lack of a clear distinction between terms and general language, which results in low inter-annotator agreement. There is a large need for well-documented, manually validated datasets, especially in the rising field of multilingual term extraction from comparable corpora, which presents a unique new set of challenges. In this paper, a new approach is presented for both monolingual and multilingual term annotation in comparable corpora. The detailed guidelines with different term labels, the domain- and language-independent methodology and the large volumes annotated in three different languages and four different domains make this a rich resource. The resulting datasets are not just suited for evaluation purposes but can also serve as a general source of information about terms and even as training data for supervised methods. Moreover, the gold standard for multilingual term extraction from comparable corpora contains information about term variants and translation equivalents, which allows an in-depth, nuanced evaluation

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined
    • …
    corecore