2,851 research outputs found

    Combinatorics and Probability

    Get PDF
    For the past few decades, Combinatorics and Probability Theory have had a fruitful symbiosis, each benefitting from and influencing developments in the other. Thus to prove the existence of designs, probabilistic methods are used, algorithms to factorize integers need combinatorics and probability theory (in addition to number theory), and the study of random matrices needs combinatorics. In the workshop a great variety of topics exemplifying this interaction were considered, including problems concerning designs, Cayley graphs, additive number theory, multiplicative number theory, noise sensitivity, random graphs, extremal graphs and random matrices

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    On some problems in extremal, probabilistic and enumerative combinatorics

    Get PDF
    This is a study of a small selection of problems from various areas of Combinatorics and Graph Theory, a fast developing field that provides a diverse spectrum of powerful tools with numerous applications to computer science, optimization theory and economics. In this thesis, we focus on extremal, probabilistic and enumerative problems in this field. A central theorem in combinatorics is Sperner's Theorem, which determines the maximum size of a family \F\subseteq \P(n) that does not contain a 22-chain F1F2F_1\subsetneq F_2. Erd\H{o}s later extended this result and determined the largest family not containing a kk-chain F1FkF_1\subsetneq \ldots \subsetneq F_k. Erd\H{o}s and Katona and later Kleitman asked how many such chains must appear in families whose size is larger than the corresponding extremal result. In Chapter 2 we answer their question for all families of size at most (1-\eps)2^n, provided nn is sufficiently larger compared to kk and \eps. The result of Chapter 2 is an example of a supersaturation, or Erd\H{o}s--Rademacher type result, which seeks to answer how many forbidden objects must appear in a set whose size is larger than the corresponding result. These supersaturation results are a key ingredient to a very recently discovered proof method, called the Container method. Chapters 3 and 4 show various examples of this method in action. In Chapter 3 we, among others, give tight bounds on the logarithm of the number of tt-error correcting codes and illustrate how the Container method can be used to prove random analoges of classical extremal results. In Chapter 4 we solve a conjecture of Burosch--Demetrovics--Katona--Kleitman--Sapozhenko about estimating the number of families in {0,1}n\{0,1\}^n which do not contain two sets and their union. In Chapter 5 we improve an old result of Erd\H{o}s and Spencer. Folkman's theorem asserts that for each kNk \in \N, there exists a natural number n=F(k)n = F(k) such that whenever the elements of [n][n] are two-colored, there exists a set A[n]A \subset [n] of size kk with the property that all the sums of the form xBx\sum_{x \in B} x, where BB is a nonempty subset of AA, are contained in [n][n] and have the same color. In 1989, Erd\H{o}s and Spencer showed that F(k)2ck2/logkF(k) \ge 2^{ck^2/ \log k}, where c>0c >0 is an absolute constant; here, we improve this bound significantly by showing that F(k)22k1/kF(k) \ge 2^{2^{k-1}/k} for all kNk\in \N. Fox--Grinshpun--Pach showed that every 33-coloring of the complete graph on nn vertices without a rainbow triangle contains a clique of size Ω(n1/3log2n)\Omega\left(n^{1/3}\log^2 n\right) which uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. In Chapter 6 we show, amongst others, that every such coloring contains a 22-colored subgraph with chromatic number at least n2/3n^{2/3}, and this is best possible. As a direct corollary of our result we obtain a generalisation of the celebrated theorem of Erd\H{o}s-Szekeres, which states that any sequence of nn numbers contains a monotone subsequence of length at least n\sqrt{n}
    corecore