3,168,645 research outputs found

    Pseudorandom Self-Reductions for NP-Complete Problems

    Get PDF
    A language L is random-self-reducible if deciding membership in L can be reduced (in polynomial time) to deciding membership in L for uniformly random instances. It is known that several "number theoretic" languages (such as computing the permanent of a matrix) admit random self-reductions. Feigenbaum and Fortnow showed that NP-complete languages are not non-adaptively random-self-reducible unless the polynomial-time hierarchy collapses, giving suggestive evidence that NP may not admit random self-reductions. Hirahara and Santhanam introduced a weakening of random self-reductions that they called pseudorandom self-reductions, in which a language L is reduced to a distribution that is computationally indistinguishable from the uniform distribution. They then showed that the Minimum Circuit Size Problem (MCSP) admits a non-adaptive pseudorandom self-reduction, and suggested that this gave further evidence that distinguished MCSP from standard NP-Complete problems. We show that, in fact, the Clique problem admits a non-adaptive pseudorandom self-reduction, assuming the planted clique conjecture. More generally we show the following. Call a property of graphs ? hereditary if G ? ? implies H ? ? for every induced subgraph of G. We show that for any infinite hereditary property ?, the problem of finding a maximum induced subgraph H ? ? of a given graph G admits a non-adaptive pseudorandom self-reduction

    A complete criterion for separability detection

    Full text link
    Using new results on the separability properties of bosonic systems, we provide a new complete criterion for separability. This criterion aims at characterizing the set of separable states from the inside by means of a sequence of efficiently solvable semidefinite programs. We apply this method to derive arbitrarily good approximations to the optimal measure-and-prepare strategy in generic state estimation problems. Finally, we report its performance in combination with the criterion developed by Doherty et al. [1] for the calculation of the entanglement robustness of a relevant family of quantum states whose separability properties were unknown

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
    • …
    corecore