871 research outputs found

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    The Cosmic Infrared Background: Measurements and Implications

    Get PDF
    The cosmic infrared background records much of the radiant energy released by processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In the past few years, data from the Cosmic Background Explorer mission provided the first measurements of this background, with additional constraints coming from studies of the attenuation of TeV gamma-rays. At the same time there has been rapid progress in resolving a significant fraction of this background with the deep galaxy counts at infrared wavelengths from the Infrared Space Observatory instruments and at submillimeter wavelengths from the Submillimeter Common User Bolometer Array instrument. This article reviews the measurements of the infrared background and sources contributing to it, and discusses the implications for past and present cosmic processes.Comment: 61 pages, incl. 9 figures, to be published in Annual Reviews of Astronomy and Astrophysics, 2001, Vol. 3

    Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    Get PDF
    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented

    Probing the Universe with Weak Lensing

    Get PDF
    Gravitational lenses can provide crucial information on the geometry of the Universe, on the cosmological scenario of formation of its structures as well as on the history of its components with look-back time. In this review, I focus on the most recent results obtained during the last five years from the analysis of the weak lensing regime. The interest of weak lensing as a probe of dark matter and the for study of the coupling between light and mass on scales of clusters of galaxies, large scale structures and galaxies is discussed first. Then I present the impact of weak lensing for the study of distant galaxies and of the population of lensed sources as function of redshift. Finally, I discuss the potential interest of weak lensing to constrain the cosmological parameters, either from pure geometrical effects observed in peculiar lenses, or from the coupling of weak lensing with the CMB.Comment: To appear Annual Review of Astronomy and Astrophysiscs Vol. 37. Latex and psfig.sty. Version without figure, 54 pages, 73Kb. Complete version including 13 figures (60 pages) available on ftp.iap.fr anonymous account in /pub/from_users/mellier/AnnualReview ; file ARAAmellier.ps.gz 1.6 M

    Conference Summary

    Get PDF
    By any measure, IAU Symposium 280 has been an outstanding success: more than 400 participants represented at least 30 countries with 74 presentations and more than 300 posters. Beyond these numbers, it is evident that the cross-disciplinary field of astrochemistry is flourishing with excellent prospects for growth in the future. We have enjoyed the excitement of new, unexpected results from the Herschel Space Observatory and eagerly await new opportunities and facilities that will arise in the coming months and years
    corecore