2,375,617 research outputs found

    Asset Pricing with Incomplete Information In a Discrete Time Pure Exchange Economy

    Get PDF
    We study the consumption based asset pricing model in a discrete time pure exchange setting with incomplete information. Incomplete information leads to a filtering problem which agents solve using the Kalman filter. We characterize the solution to the asset pricing problem in such a setting. Empirical estimation with US consumption data indicates strong statistical support for the incomplete information model versus the benchmark complete information model. We investigate the ability of the model to replicate some key stylized facts about US equity and riskfree returns.asset pricing, incomplete information, Kalman filter, equity returns, riskfree returns

    Views, Program Transformations, and the Evolutivity Problem in a Functional Language

    Get PDF
    We report on an experience to support multiple views of programs to solve the tyranny of the dominant decomposition in a functional setting. We consider two possible architectures in Haskell for the classical example of the expression problem. We show how the Haskell Refactorer can be used to transform one view into the other, and the other way back. That transformation is automated and we discuss how the Haskell Refactorer has been adapted to be able to support this automated transformation. Finally, we compare our implementation of views with some of the literature.Comment: 19 page

    Tools for second language support

    Get PDF
    The second language problem is the context in which non-native English speakers are required to interact with English-based computer systems. In other papers, we have characterized this setting and proposed methods of supporting such users. The present paper details several tools that we have developed to assist in our work with second language support. A prime consideration in such tool development is to facilitate easy management of alternative language resources. The need for criteria to direct second language support and the role of such tools in helping to evaluate such criteria is detailed here

    Semi-supervised transductive speaker identification

    Get PDF
    We present an application of transductive semi-supervised learning to the problem of speaker identification. Formulating this problem as one of transduction is the most natural choice in some scenarios, such as when annotating archived speech data. Experiments with the CHAINS corpus show that, using the basic MFCC-encoding of recorded utterances, a well known simple semi-supervised algorithm, label spread, can solve this problem well. With only a small number of labelled utterances, the semi-supervised algorithm drastically outperforms a state of the art supervised support vector machine algorithm. Although we restrict ourselves to the transductive setting in this paper, the results encourage future work on semi-supervised learning for inductive speaker identification

    Near-Optimal and Robust Mechanism Design for Covering Problems with Correlated Players

    Full text link
    We consider the problem of designing incentive-compatible, ex-post individually rational (IR) mechanisms for covering problems in the Bayesian setting, where players' types are drawn from an underlying distribution and may be correlated, and the goal is to minimize the expected total payment made by the mechanism. We formulate a notion of incentive compatibility (IC) that we call {\em support-based IC} that is substantially more robust than Bayesian IC, and develop black-box reductions from support-based-IC mechanism design to algorithm design. For single-dimensional settings, this black-box reduction applies even when we only have an LP-relative {\em approximation algorithm} for the algorithmic problem. Thus, we obtain near-optimal mechanisms for various covering settings including single-dimensional covering problems, multi-item procurement auctions, and multidimensional facility location.Comment: Major changes compared to the previous version. Please consult this versio

    Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors

    Full text link
    While single measurement vector (SMV) models have been widely studied in signal processing, there is a surging interest in addressing the multiple measurement vectors (MMV) problem. In the MMV setting, more than one measurement vector is available and the multiple signals to be recovered share some commonalities such as a common support. Applications in which MMV is a naturally occurring phenomenon include online streaming, medical imaging, and video recovery. This work presents a stochastic iterative algorithm for the support recovery of jointly sparse corrupted MMV. We present a variant of the Sparse Randomized Kaczmarz algorithm for corrupted MMV and compare our proposed method with an existing Kaczmarz type algorithm for MMV problems. We also showcase the usefulness of our approach in the online (streaming) setting and provide empirical evidence that suggests the robustness of the proposed method to the distribution of the corruption and the number of corruptions occurring.Comment: 13 pages, 6 figure
    • …
    corecore