2,972 research outputs found

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    Thermodynamic Properties of XXZ model in a Transverse Field

    Full text link
    We have numerically studied the thermodynamic properties of the spin 1/2 XXZ chain in the presence of a transverse (non commuting) magnetic field. The thermal, field dependence of specific heat and correlation functions for chains up to 20 sites have been calculated. The area where the specific heat decays exponentially is considered as a measure of the energy gap. We have also obtained the exchange interaction between chains in a bulk material using the random phase approximation and derived the phase diagram of the three dimensional material with this approximation. The behavior of the structure factor at different momenta verifies the antiferromagnetic long range order in y-direction for the three dimensional case. Moreover, we have concluded that the Low Temperature Lanczos results [M. Aichhorn et al., Phys. Rev. B 67, 161103(R) (2003)] are more accurate for low temperatures and closer to the full diagonalization ones than the results of Finite Temperature Lanczos Method [J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994)].Comment: 7 pages, 10 eps figure

    Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines

    Get PDF
    We present the first comparison of profiles of H et He resonance lines observed by SUMER with theoretical profiles computed with our non-LTE radiative transfer code. We use the H I Lyman-beta, H I Lyman-epsilon, and He I 584 A lines. Our code allows us to obtain the plasma parameters in prominences in conjunction with a multi-line, multi-element set of observations. The plasma temperature in the prominence core is ~ 8600 K and the pressure is 0.03 dyn/cm^2. The Ly-beta line is formed in a higher temperature region (more than 11000 K).Comment: 2 pages, 2 color figures. Proceedings of SF2A, Semaine de l'Astrophysique Francaise, Journees de la SF2A 2006, Pari

    Aerospace Medicine and Biology: A continuing bibliography (supplement 229)

    Get PDF
    This bibliography lists 109 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982
    corecore