2,013 research outputs found

    Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions

    Get PDF
    Diesel exhaust emissions were introduced into an atmospheric simulation chamber and measured using thermal desorption (TD) comprehensive two-dimensional gas chromatography coupled to a flame ionisation detector (GC × GC-FID). An extensive set of measurements were performed to investigate the effect of different engine conditions (i.e. load, speed, driving scenarios) and emission control devices (with or without diesel oxidative catalyst, DOC) on the composition and abundance of unregulated exhaust gas emissions from a light-duty diesel engine, fuelled with ultra-low sulfur diesel (ULSD). A range of exhaust dilution ratios were investigated (range = 1:60 to 1:1158), simulating the chemical and physical transformations of the exhaust gas from near to downwind of an emission source. In total, 16 individual and 8 groups of compounds (aliphatics and single-ring aromatics) were measured in the exhaust gas ranging from volatile to intermediate volatility (VOC-IVOC), providing both detailed chemical speciation and groupings of compounds based on their structure and functionality. Measured VOC-IVOC emission rates displayed excellent reproducibility from replicate experiments using similar exhaust dilution ratios. However, at the extremes of the investigated exhaust dilution ratios (comparison of 1:60 and 1:1158), measured VOC-IVOC emission rates displayed some disagreement owing to poor reproducibility and highlighted the importance of replicate sample measurements. The investigated DOC was found to remove 43±10% (arithmetic mean±experimental uncertainty) of the total speciated VOC-IVOC ( ∑ SpVOC-IVOC) emissions. The compound class-dependant removal efficiencies for the investigated DOC were 39±12% and 83±3% for the aliphatics and single-ring aromatics, respectively. The DOC aliphatic removal efficiency generally decreased with increasing carbon chain length. The  ∑ SpVOC-IVOC emission rates varied significantly with different engine conditions, ranging from 70 to 9268mgkg−1 (milligrams of mass emitted per kilogram of fuel burnt).  ∑ SpVOC-IVOC emission rates generally decreased with increasing engine load and temperature, and to a lesser degree, engine speed. The exhaust gas composition changed considerably as a result of two influencing factors: engine combustion and DOC hydrocarbon (HC) removal efficiency. Increased engine combustion efficiency resulted in a greater percentage contribution of the C7 to C12 n-alkanes to the  ∑ SpVOC-IVOC emission rate. Conversely, increased DOC HC removal efficiency resulted in a greater percentage contribution of the C7 to C12 branched aliphatics to the  ∑ SpVOC-IVOC emission rate. At low engine temperatures ( < 150°C, below the working temperature of the DOC), the contribution of n-alkanes in the exhaust gas increased with increasing combustion efficiency and may be important in urban environments, as n-alkanes are more efficient at producing secondary organic aerosol (SOA) than their branched counterparts. At very high engine temperatures (maximum applied engine speed and load, engine temperature = 700°C), the n-alkane contribution increased by a factor of 1.6 times greater than that observed in the cold-start experiment (most similar to unburnt fuel) and may suggest liquid-fuel-based estimates of SOA yields may be inconsistent with exhaust SOA yields, particularly at high engine speeds and loads (i.e. high engine temperatures). Emission rates were found to be 65 times greater from a cold-start experiment than at maximum applied engine speed and load. To our knowledge, this is the first study which uses an atmospheric simulation chamber to separate the effects of the DOC and combustion efficiency on the exhaust gas composition

    Apollo extension system lsv studies. mission command and control

    Get PDF
    Steering system and control circuit for Lunar Surface Vehicle /LSV/ - Apollo projec

    Reward changes salience in human vision via the anterior cingulate

    Get PDF
    Reward-related mesolimbic dopamine steers animal behavior, creating automatic approach toward reward-associated objects and avoidance of objects unlikely to be beneficial. Theories of dopamine suggest that this reflects underlying biases in perception and attention, with reward enhancing the representation of reward-associated stimuli such that attention is more likely to be deployed to the location of these objects. Using measures of behavior and brain electricity in male and female humans, we demonstrate this to be the case. Sensory and perceptual processing of reward-associated visual features is facilitated such that attention is deployed to objects characterized by these features in subsequent experimental trials. This is the case even when participantsknowthat a strategic decision to attend to reward-associated features will be counterproductive and result in suboptimal performance. Other results show that the magnitude of visual bias created by reward is predicted by the response to reward feedback in anterior cingulate cortex, an area with strong connections to dopaminergic structures in the midbrain. These results demonstrate that reward has an impact on vision that is independent of its role in the strategic establishment of endogenous attention. We suggest that reward acts to change visual salience and thus plays an important and undervalued role in attentional control. Copyright © 2010 the authors

    Populating an economic model with health state utility values: moving towards better practice

    Get PDF
    Background: When estimating health state utility values (HSUV) for multiple health conditions, the alternative models used to combine these data can produce very different values. Results generated using a baseline of perfect health are not comparable with those generated using a baseline adjusted for not having the health condition taking into account age and gender. Despite this, there is no guidance on the preferred techniques that should be used and very little research describing the effect on cost per QALY results. Methods: Using a cardiovascular disease (CVD) model and cost per QALY thresholds, we assess the consequence of using different baseline health state utility profiles (perfect health, individuals with no history of CVD, general population) in conjunction with three models (minimum, additive, multiplicative) frequently used to estimate proxy scores for multiple health conditions. Results: Assuming a baseline of perfect health ignores the natural decline in quality of life associated with co-morbidities, over-estimating the benefits of treatment to such an extent it could potentially influence a threshold policy decision. The minimum model biases results in favour of younger aged cohorts while the additive and multiplicative technique produced similar results. Although further research in additional health conditions is required to support our findings, this pilot study highlights the urgent need for analysts to conform to an agreed reference case and provides initial recommendations for better practice. We demonstrate that in CVD, if data are not available from individuals without the health condition, HSUVs from the general population provide a reasonable approximation

    The merging/AGN connection: A case for 3D spectroscopy

    Full text link
    We discuss an ongoing study of the connection between galaxy merging/interaction and AGN activity, based on integral field spectroscopy. We focus on the search for AGN ionization in the central regions of mergers, previously not classified as AGNs. We present here the science case, the current status of the project, and plans for future observations.Comment: 4 pages, 3 figure, Euro3D Science Workshop, Cambridge, May 2003, AN, accepte

    A Hidden Side of Norplant

    Get PDF
    • …
    corecore