1,145 research outputs found

    Saddle Points and Stark Ladders: Exact Calculations of Exciton Spectra in Superlattices

    Full text link
    A new, exact method for calculating excitonic absorption in superlattices is described. It is used to obtain high resolution spectra showing the saddle point exciton feature near the top of the miniband. The evolution of this feature is followed through a series of structures with increasing miniband width. The Stark ladder of peaks produced by an axial electric field is investigated, and it is shown that for weak fields the line shapes are strongly modified by coupling to continuum states, taking the form of Fano resonances. The calculated spectra, when suitably broadened, are found to be in good agreement with experimental results.Comment: 9 pages Revtex v3.0, followed by 4 uuencoded postscript figures, SISSA-CM-94-00

    Doublet structures in quantum well absorption spectra due to Fano-related interference

    Full text link
    In this theoretical investigation we predict an unusual interaction between a discrete state and a continuum of states, which is closely related to the case of Fano-interference. It occurs in a GaAs/AlxGa1-xAs quantum well between the lowest light-hole exciton and the continuum of the second heavy-hole exciton. Unlike the typical case for Fano-resonance, the discrete state here is outside the continuum; we use uniaxial stress to tune its position with respect to the onset of the continuum. State-of-the art calculations of absorption spectra show that as the discrete state approaches the continuum, a doublet structure forms which reveals anticrossing behaviour. The minimum separation energy of the anticrossing depends characteristically on the well width and is unusually large for narrow wells. This offers striking evidence for the strong underlying valence-band mixing. Moreover, it proves that previous explanations of similar doublets in experimental data, employing simple two-state models, are incomplete.Comment: 21 pages, 5 figures and 5 equations. Accepted for publication in Physical Review

    The Globular Cluster System of the Coma cD Galaxy NGC 4874 from Hubble Space Telescope ACS and WFC3/IR Imaging

    Get PDF
    We present new HST optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system of NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g) and F814W (I) passbands and the Wide Field Camera 3 IR Channel in F160W (H). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g-I > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I-H color. Consistent with past work, we find evidence for nonlinearity in the g-I versus I-H color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or "blue tilt," for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I-H color as a function of magnitude; for M_814 < -10 mag, these trends imply a steep mass-metallicity scaling with ZMGC1.4±0.4Z\propto M_{\rm GC}^{1.4\pm0.4}, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4+/-1 kpc towards the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km/s with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential.Comment: 24 pages, 20 figures, accepted for publication in Ap
    corecore