2,201 research outputs found

    An MLSA-based online scheme for the rapid identification of Stenotrophomonas isolates

    Get PDF
    An online scheme to assign Stenotrophomonas isolates to genomic groups was developed using the multilocus sequence analysis (MLSA), which is based on the DNA sequencing of selected fragments of the housekeeping genes ATP synthase alpha subunit (atpA), the recombination repair protein (recA), the RNA polymerase alpha subunit (rpoA) and the excision repair beta subunit (uvrB). This MLSA-based scheme was validated using eight of the 10 Stenotrophomonas species that have been previously described. The environmental and nosocomial Stenotrophomonas strains were characterised using MLSA, 16S rRNA sequencing and DNA-DNA hybridisation (DDH) analyses. Strains of the same species were found to have greater than 95% concatenated sequence similarity and specific strains formed cohesive readily recognisable phylogenetic groups. Therefore, MLSA appeared to be an effective alternative methodology to amplified fragment length polymorphism fingerprint and DDH techniques. Strains of Stenotrophomonas can be readily assigned through the open database resource that was developed in the current study (www.steno.lncc.br/)

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Monitor for checking electric-field meters

    Get PDF
    Portable monitor can be used to check electric-field meters on location. Faulty communication line or faulty unit can be determined on the spot

    Automatic pigmented lesion segmentation through a dermoscopy-guided OCT approach for early diagnosis

    Get PDF
    Early diagnosis of pigmented lesions, specially melanoma, is an unmet clinical need that would help to improve patient prognosis. Apart from histopathological biopsy, the only gold standard non-invasive imaging technique during diagnosis is dermatoscopy (DD). Over the last years, new medical imaging techniques are being developed and Optical Coherence Tomography (OCT) has demonstrated to be very helpful on dermatology. OCT is non-invasive and provides in-depth structural microscopic information of the skin in real-time. In comparison with other novel techniques, as Reflectance Confocal Microscopy (RCM), the acquisition time is lower and the field-of-view higher. Hence, consolidated diagnosis techniques and novel imaging modalities can be combined to improve decision making during diagnosis and treatment. With actual methods, the delineation of lesion margins directly on OCT images during early stages of the disease is still really challenging and, at the same time, relevant from a prognosis perspective. This work proposes combining DD and OCT images to take advantage of their complementary information. The goal is to guide lesions delineation on OCT images considering the clinical features on DD images. The developed method applies image processing techniques to DD image to automatically segment the lesion; later, and after a calibration procedure, DD and OCT images become coregistered. In a final step the DD segmentation is transferred into the OCT image. Applying advanced image processing techniques and the proposed strategy of lesion delimitation, histopathological characteristics of the segmented lesion can be studied on OCT images afterwards. This proposal can lead to early, real-time and non-invasive diagnosis of pigmented lesions.This work has been developed thanks to the funding of the ECSEL European project ASTONISH (ID.692470) and Basque Country (Spain) ELKARTEK projects MELAMICS (KK-2016-00036) and MELAMICS II (KK-2017/00041). Special thanks to the dermatologists and personnel of the Cruces University Hospital (Cruces, Spain) and the Basurto University Hospital (Bilbao, Spain) for their collaboration on the generation of the annotated database from real patients

    Two-boson Correlations in Various One-dimensional Traps

    Full text link
    A one-dimensional system of two trapped bosons which interact through a contact potential is studied using the optimized configuration interaction method. The rapid convergence of the method is demonstrated for trapping potentials of convex and non-convex shapes. The energy spectra, as well as natural orbitals and their occupation numbers are determined in function of the inter-boson interaction strength. Entanglement characteristics are discussed in dependence on the shape of the confining potential.Comment: 5 pages, 3 figure

    Automatic pigmented lesion segmentation through a dermoscopy-guided OCT approach for early diagnosis

    Get PDF
    Early diagnosis of pigmented lesions, specially melanoma, is an unmet clinical need that would help to improve patient prognosis. Apart from histopathological biopsy, the only gold standard non-invasive imaging technique during diagnosis is dermatoscopy (DD). Over the last years, new medical imaging techniques are being developed and Optical Coherence Tomography (OCT) has demonstrated to be very helpful on dermatology. OCT is non-invasive and provides in-depth structural microscopic information of the skin in real-time. In comparison with other novel techniques, as Reflectance Confocal Microscopy (RCM), the acquisition time is lower and the field-of-view higher. Hence, consolidated diagnosis techniques and novel imaging modalities can be combined to improve decision making during diagnosis and treatment. With actual methods, the delineation of lesion margins directly on OCT images during early stages of the disease is still really challenging and, at the same time, relevant from a prognosis perspective. This work proposes combining DD and OCT images to take advantage of their complementary information. The goal is to guide lesions delineation on OCT images considering the clinical features on DD images. The developed method applies image processing techniques to DD image to automatically segment the lesion; later, and after a calibration procedure, DD and OCT images become coregistered. In a final step the DD segmentation is transferred into the OCT image. Applying advanced image processing techniques and the proposed strategy of lesion delimitation, histopathological characteristics of the segmented lesion can be studied on OCT images afterwards. This proposal can lead to early, real-time and non-invasive diagnosis of pigmented lesions.This work has been developed thanks to the funding of the ECSEL European project ASTONISH (ID.692470) and Basque Country (Spain) ELKARTEK projects MELAMICS (KK-2016-00036) and MELAMICS II (KK-2017/00041). Special thanks to the dermatologists and personnel of the Cruces University Hospital (Cruces, Spain) and the Basurto University Hospital (Bilbao, Spain) for their collaboration on the generation of the annotated database from real patients

    Money management and entrepreneurial training in microfinance: impact on beneficiaries and institutions

    Get PDF
    This study uses a randomized control trial to evaluate the outcome of integrating money management and entrepreneurial training into a microcredit program in India. We find positive and significant effects on clients\u2019 financial management skills and entrepreneurship abilities, particularly for clients with higher human capital, or more diligent, or having an entrepreneurial idea, and an increase in initiative and self-confidence. Effects appear stronger for clients obliged to attend the training course or more interested in attending it. By considering missed or delayed repayments reduction we assess the benefits of the training provided and of extending it for the institution

    The 2019 Raikoke volcanic eruption - Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide

    Get PDF
    Abstract. Volcanic eruptions can cause significant disruption to society, and numerical models are crucial for forecasting the dispersion of erupted material. Here we assess the skill and limitations of the Met Office's Numerical Atmospheric-dispersion Modelling Environment (NAME) in simulating the dispersion of the sulfur dioxide (SO2) cloud from the 21–22 June 2019 eruption of the Raikoke volcano (48.3∘ N, 153.2∘ E). The eruption emitted around 1.5±0.2 Tg of SO2, which represents the largest volcanic emission of SO2 into the stratosphere since the 2011 Nabro eruption. We simulate the temporal evolution of the volcanic SO2 cloud across the Northern Hemisphere (NH) and compare our model simulations to high-resolution SO2 measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite SO2 products. We show that NAME accurately simulates the observed location and horizontal extent of the SO2 cloud during the first 2–3 weeks after the eruption but is unable, in its standard configuration, to capture the extent and precise location of the highest magnitude vertical column density (VCD) regions within the observed volcanic cloud. Using the structure–amplitude–location (SAL) score and the fractional skill score (FSS) as metrics for model skill, NAME shows skill in simulating the horizontal extent of the cloud for 12–17 d after the eruption where VCDs of SO2 (in Dobson units, DU) are above 1 DU. For SO2 VCDs above 20 DU, which are predominantly observed as small-scale features within the SO2 cloud, the model shows skill on the order of 2–4 d only. The lower skill for these high-SO2-VCD regions is partly explained by the model-simulated SO2 cloud in NAME being too diffuse compared to TROPOMI retrievals. Reducing the standard horizontal diffusion parameters used in NAME by a factor of 4 results in a slightly increased model skill during the first 5 d of the simulation, but on longer timescales the simulated SO2 cloud remains too diffuse when compared to TROPOMI measurements. The skill of NAME to simulate high SO2 VCDs and the temporal evolution of the NH-mean SO2 mass burden is dominated by the fraction of SO2 mass emitted into the lower stratosphere, which is uncertain for the 2019 Raikoke eruption. When emitting 0.9–1.1 Tg of SO2 into the lower stratosphere (11–18 km) and 0.4–0.7 Tg into the upper troposphere (8–11 km), the NAME simulations show a similar peak in SO2 mass burden to that derived from TROPOMI (1.4–1.6 Tg of SO2) with an average SO2 e-folding time of 14–15 d in the NH. Our work illustrates how the synergy between high-resolution satellite retrievals and dispersion models can identify potential limitations of dispersion models like NAME, which will ultimately help to improve dispersion modelling efforts of volcanic SO2 clouds. </jats:p
    corecore