2,224 research outputs found

    The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851

    Get PDF
    Photometry with HST's ACS reveals that the subgiant branch (SGB) of the globular cluster NGC 1851 splits into two well-defined branches. If the split is due only to an age effect, the two SGBs would imply two star formation episodes separated by ∌\sim 1 Gyr. We discuss other anomalies in NGC 1851 which could be interpreted in terms of a double stellar population. Finally, we compare the case of NGC 1851 with the other two globulars known to host multiple stellar populations, and show that all three clusters differ in several important respects.Comment: 22 pages, 7 figures, accepted for pubblication on Ap

    Multiple stellar populations in the Galactic globular cluster NGC 6752

    Full text link
    We have carried out high-precision photometry on a large number of archival HST images of the Galactic globular cluster NGC 6752, to search for signs of multiple stellar populations. We find a broadened main sequence, and demonstrate that this broadening cannot be attributed either to binaries or to photometric errors. There is also some indication of a main-sequence split. No significant spread could be found along the subgiant branch, however. Ground-based photometry reveals that in the U vs. (U-B) color-magnitude diagram the red-giant branch exhibits a clear color spread, which we have been able to correlate with variations in Na and O abundances. In particular the Na-rich, O-poor stars identified by Carretta et al. (2007) define a sequence on the red side of the red-giant branch, while Na-poor, O-rich stars populate a bluer, more dispersed portion of the red-giant branch.Comment: 31 pages, 12 figures; Accepted for Publication in the Astrophysical Journa

    Global and non-global parameters of horizontal branch morphology of globular clusters

    Full text link
    The horizontal branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC, and the other a non-global parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST) and analyse the CMDs of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the RGB and the coolest part of the HB, and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterised by Delta Y and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among Delta Y, GC mass, and L2. We conclude that age and metallicity are the main global parameters while the range of helium abundance within a GC is the main non-global parameter defining the HB morphology of Galactic GCs.Comment: 34 pages, 13 figures, accepted for publication in Ap

    The ACS Survey of Galactic Globular Clusters. X. New Determinations of Centers for 65 Clusters

    Full text link
    We present new measurements of the centers for 65 Milky Way globular clusters. Centers were determined by fitting ellipses to the density distribution within the inner 2\arcmin of the cluster center, and averaging the centers of these ellipses. The symmetry of clusters was also analyzed by comparing cumulative radial distributions on opposite sides of the cluster across a grid of trial centers. All of the determinations were done with stellar positions derived from a combination of two single-orbit ACS images of the core of the cluster in F606WF606W and F814WF814W. We find that the ellipse-fitting method provides remarkable accuracy over a wide range of core sizes and density distributions, while the symmetry method is difficult to use on clusters with very large cores, or low density. The symmetry method requires a larger field, or a very sharply peaked density distribution.Comment: 17 pages, 8 figures, Accepted for publication in AJ, supplementary material will be available upon publicatio

    Mapping the differential reddening in globular clusters

    Get PDF
    We build differential-reddening maps for 66 Galactic globular clusters (GCs) with archival HST WFC/ACS F606W and F814W photometry. Because of the different GC sizes (characterised by the half-light radius RhR_h) and distances to the Sun, the WFC/ACS field of view (200\arcsec\times200\arcsec) coverage (RobsR_{obs}) lies in the range 1\la R_{obs}/R_h\la15 for about 85% of the sample, with about 10% covering only the inner (R_{obs}\la R_h) parts. We divide the WFC/ACS field of view across each cluster in a regular cell grid, and extract the stellar-density Hess diagram from each cell, shifting it in colour and magnitude along the reddening vector until matching the mean diagram. Thus, the maps correspond to the internal dispersion of the reddening around the mean. Depending on the number of available stars (i.e. probable members with adequate photometric errors), the angular resolution of the maps range from \approx7\arcsec\times7\arcsec to \approx20\arcsec\times20\arcsec. We detect spatially-variable extinction in the 66 globular clusters studied, with mean values ranging from \mEBV\approx0.018 (NGC\,6981) up to \mEBV\approx0.16 (Palomar\,2). Differential-reddening correction decreases the observed foreground reddening and the apparent distance modulus but, since they are related to the same value of \EBV, the distance to the Sun is conserved. Fits to the mean-ridge lines of the highly-extincted and photometrically scattered globular cluster Palomar\,2 show that age and metallicity also remain unchanged after the differential-reddening correction, but measurement uncertainties decrease because of the reduced scatter. The lack of systematic variations of \mEBV\ with both the foreground reddening and the sampled cluster area indicates that the main source of differential reddening is interstellar.Comment: Accepted by MNRA

    The helium spread in the Globular cluster 47 Tuc

    Full text link
    Spectroscopy has shown the presence of the CN band dicothomy and the Na-O anticorrelations for 50--70% of the investigated samples in the cluster 47 Tuc, otherwise considered a "normal" prototype of high metallicity clusters from the photometric analysis. Very recently, the re-analysis of a large number of archival HST data of the cluster core has been able to put into evidence the presence of structures in the Sub Giant Branch: it has a brighter component with a spread in magnitude by ∌\sim0.06 mag and a second one, made of about 10% of stars, a little fainter (by ∌\sim0.05 mag). These data also show that the Main Sequence of the cluster has an intrinsic spread in color which, if interpreted as due to a small spread in helium abundance, suggests Δ\DeltaY∌\sim0.027. In this work we examine in detail whether the Horizontal Branch morphology and the Sub Giant structure provide further independent indications that a real --although very small-helium spread is present in the cluster. We re--analyze the HST archival data for the Horizontal Branch of 47 Tuc, obtaining a sample of ∌\sim500 stars with very small photometric errors, and build population synthesis based on new models to show that its particular morphology can be better explained by taking into account a spread in helium abundance of 2% in mass. The same variation in helium is able to explain the spread in luminosity of the Sub Giant Branch, while a small part of the second generation is characterized by a small C+N+O increase and provides an explanation for the fainter Sub Giant Branch. We conclude that three photometric features concur to form the paradigm that a small but real helium spread is present in a cluster that has no spectacular evidence for multiple populations like those shown by other massive clusters.Comment: Accepted for publication in the MNRAS on 2010 June 8. Received 2010 May 19; in original form 2010 February 9. 7 pages and 3 figures. No table

    Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. I. Sample Selection, Data Reduction and NGC 7078 Results

    Full text link
    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ~60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte-Carlo simulations. We also discuss the PM errors introduced by various systematic effects, and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.4 arcmin. We validate the catalog by comparison with existing PM measurements and LOS velocities, and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial/tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science, and will also present the PM catalogs for the other sample clusters.Comment: 34 pages, 22 figures (3 in low res), 30 tables, accepted for publication in ApJ on October 20, 201

    MCAO near-IR photometry of the Globular Cluster NGC 6388: MAD observations in crowded fields

    Full text link
    Deep photometry of crowded fields, such as Galactic Globular Clusters, is severely limited by the actual resolution of ground-based telescopes. On the other hand, the Hubble Space Telescope does not provide the near-infrared (NIR) filters needed to allow large color baselines. In this work we aim at demonstrating how ground based observations can reach the required resolution when using Multi-Conjugated Adaptive Optic (MCAO) devices in the NIR, such as the experimental infrared camera (MAD) available on the VLT. This is particularly important since these corrections are planned to be available on all ground--based telescopes in the near future. We do this by combining the infrared photometry obtained by MAD/VLT with ACS/HST optical photometry of our scientific target, the bulge globular cluster NGC 6388, in which we imaged two fields. In particular, we constructed color-magnitude diagrams with an extremely wide color baseline in order to investigate the presence of multiple stellar populations in this cluster. From the analysis of the external field, observed with better seeing conditions, we derived the deepest optical-NIR CMD of NGC 6388 to date. The high-precision photometry reveals that two distinct sub-giant branches are clearly present in this cluster. We also use the CMD from the central region to estimate the distance ((m-M)=15.33) and the reddening (E(B-V)=0.38) for this cluster. We estimate the age to be ~11.5+/- 1.5 Gyr. The large relative-age error reflects the bimodal distribution of the SGB stars. This study clearly demonstrates how MCAO correction in the NIR bands implemented on ground based telescopes can complement the high-resolution optical data from HST.Comment: 9 pages, 10 figures. Accepted for publication on A. &

    A WFC3/HST view of the three stellar populations in the Globular Cluster NGC6752

    Full text link
    Multi-band Hubble Space Telescope photometry reveals that the main sequence, sub-giant, and the red giant branch of the globular cluster NGC6752 splits into three main components in close analogy with the three distinct segments along its horizontal branch stars. These triple sequences are consistent with three stellar groups: a stellar population with a chemical composition similar to field halo stars (population a), a population (c) with enhanced sodium and nitrogen, depleted carbon and oxygen and enhanced helium abundance (Delta Y ~0.03), and a population (b) with an intermediate (between population a and c) chemical composition and slightly helium enhanced (Delta Y ~0.01). These components contain ~25% (population a), ~45% (population b), and ~30% (population c) of the stars. No radial gradient for the relative numbers of the three populations has been identified out to about 2.5 half mass radii.Comment: 42 pages, 24 figures, accepted for publication in Ap

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A quintuple stellar population in NGC2808

    Get PDF
    In this study we present first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster GC NGC2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), that we name A, B, C, D and E (though an even finer subdivision may be suggested by the data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex CMD, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by Delta Y~0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether also Population A has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium.Comment: 49 pages, 19 figure, accepted for publication in Ap
    • 

    corecore