1,883,468 research outputs found

    Size reduction of complex networks preserving modularity

    Get PDF
    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.Comment: 14 pages, 2 figure

    On the complexity of strongly connected components in directed hypergraphs

    Full text link
    We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (SCCs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. SCCs which do not reach any components but themselves). "Almost linear" here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor alpha(n), where alpha is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all SCCs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the SCCs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same
    • …
    corecore