790 research outputs found

    Techniques for Failure Recovery in a Software-Defined Network

    Get PDF
    As our lives become ever more dependent on network connectivity, it becomes increasingly more important for networks to be able to overcome the failure of individual components and continue to function. This thesis examines approaches to fault tolerance in software defined networks, and how the global viewpoint that Software-Defined Networking provides can be leveraged to create more reliable networks. In order to continue operation after the failure of a network component, the failure must first be detected, and then the network must automatically change its behaviour to mitigate any adverse consequences. This thesis evaluates a variety of fault detection methods and potential responses. Based on these evaluations the design for a fault tolerance system for software defined networks is presented. This system builds protected paths using Ring Based Forwarding, an algorithm for creating a full mesh of paths between switches in a network where each path has a fail-over path at each hop. The system monitors the network for faults using Traffic Colouring, a technique for passively monitoring network traffic

    A Radio Link Quality Model and Simulation Framework for Improving the Design of Embedded Wireless Systems

    Get PDF
    Despite the increasing application of embedded wireless systems, developers face numerous challenges during the design phase of the application life cycle. One of the critical challenges is ensuring performance reliability with respect to radio link quality. Specifically, embedded links experience exaggerated link quality variation, which results in undesirable wireless performance characteristics. Unfortunately, the resulting post-deployment behaviors often necessitate network redeployment. Another challenge is recovering from faults that commonly occur in embedded wireless systems, including node failure and state corruption. Self-stabilizing algorithms can provide recovery in the presence of such faults. These algorithms guarantee the eventual satisfaction of a given state legitimacy predicate regardless of the initial state of the network. Their practical behavior is often different from theoretical analyses. Unfortunately, there is little tool support for facilitating the experimental analysis of self-stabilizing systems. We present two contributions to support the design phase of embedded wireless system development. First, we provide two empirical models that predict radio-link quality within specific deployment environments. These models predict link performance as a function of inter-node distance and radio power level. The models are culled from extensive experimentation in open grass field and dense forest environments using all radio power levels and covering up to the maximum distances reachable by the radio. Second, we provide a simulation framework for simulating self-stabilizing algorithms. The framework provides three feature extensions: (i) fault injection to study algorithm behavior under various fault scenarios, (ii) automated detection of non-stabilizing behavior; and (iii) integration of the link quality models described above. Our contributions aim at avoiding problems that could result in the need for network redeployment

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented
    corecore