645 research outputs found

    Towards an Integrated In-Vehicle Isolation and Resilience Framework for Connected Autonomous Vehicles

    Get PDF
    Connected Autonomous Vehicles (CAV) have attracted significant attention, specifically due to successful deployment of ultra-reliable low-latency communications with Fifth Generation (5G) wireless networks. Due to the safety-critical nature of CAV, reliability is one of the well-investigated areas of research. Security of in-vehicle communications is mandatory to achieve this goal. Unfortunately, existing research so far focused on in-vehicle isolation or resilience independently. This short paper presents the elements of an integrated in-vehicle isolation and resilience framework to attain a higher degree of reliability for CAV systems. The proposed framework architecture leverages benefits of Trusted Execution Environments to mitigate several classes of threats. The framework implementation is also mapped to the AUTOSAR open automotive standard

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Hardware Assisted Solutions for Automobile Security

    Get PDF
    In the past couple of decades, many in-vehicle features have been invented and deployed in order to make modern vehicles which not only safer and more reliable but also connected, smarter, and intelligent. Meanwhile, vehicular ad-hoc networks (VANETs) are proposed to provide communications between vehicles and road-side stations as the foundation of the intelligent transportation system to provide efficient and safe transportation. To support these updated functions, a large amount of electronic equipment has been integrated into the car system. Although these add-on functions around vehicles offer great help in driving assistance, they inevitably introduced new security vulnerabilities that threaten the safety of the on-board drivers, passengers and pedestrians. This has been demonstrated by many well-documented attacks either on the in-vehicle bus system or on the wireless vehicular network communications. In this dissertation, we design and implement several hardware-oriented solutions to the arousing security issues on vehicles. More specifically, we focus on three important and representative problems: (1) how to secure the in-vehicle Controller Area Network (CAN), (2) how to secure the communication between vehicle and outside, and (3) how to establish trust on VANETs. Current approaches based on cryptographic algorithms to secure CAN bus violate the strict timing and limited resource constraints for CAN communications. We thus emphasize on the alternate solution of intrusion detection system (IDS) in this dissertation. We explore monitoring the changes of CAN message content or the physical delay of its transmission to detect on the CAN bus. We first propose a new entropy-based IDS following the observation that all the known CAN message injection attacks need to alter the CAN identifier bit. Thus, analyzing the entropy changes of such bits can be an effective way to detect those attacks. Next, we develop a delay-based IDS to protect the CAN network by identifying the location of the compromised Electronic Control Unit (ECU) from the transmission delay difference to two terminals connected to the CAN bus. We demonstrate that both approaches can protect the integrity of the messages on CAN bus leading to a further improve the security and safety of autonomous vehicles. In the second part of this dissertation, we consider Plug-and-Secure, an industrial practice on key management for automotive CAN networks. It has been proven to be information theoretically secure. However, we discover side-channel attacks based on the physical properties of the CAN bus that can leak almost the entire secret key bits. We analyze the fundamental characteristics that lead to such attacks and propose techniques to minimize information leakage at the hardware level. Next, we extend our study from in-vehicle secure CAN communication to the communication between vehicle and outside world. We take the example of the popular GPS spoofing attack and show how we can use the rich information from CAN bus to build a cross-validation system to detect such attacks. Our approach is based on the belief that the local driving data from the in-vehicle network can be authenticated and thus trusted by secure CAN networks mechanisms. Such data can be used to cross-validate the GPS signals from the satellite which are vulnerable to spoofing attacks. We conduct driving tests on real roads to show that our proposed approach can defend both GPS spoofing attacks and location-based attacks on the VANETs. Finally, we propose a blockchain based Anonymous Reputation System (BARS) to establish a privacy-preserving trust model for VANETs. The certificate and revocation transparency is implemented efficiently with the proofs of presence and absence based on the extended blockchain technology. To prevent the broadcast of forged messages, a reputation evaluation algorithm is presented relying on both direct historical interactions of that vehicle and indirect opinions from the other vehicles. This dissertation features solutions to vehicle security problems based on hardware or physical characteristics, instead of cryptographic algorithms. We believe that given the critical timing requirement on vehicular systems and their very limited resource (such as the bandwidth on CAN bus), this will be a very promising direction to secure vehicles and vehicular network

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Deteção de intrusões de rede baseada em anomalias

    Get PDF
    Dissertação de mestrado integrado em Eletrónica Industrial e ComputadoresAo longo dos últimos anos, a segurança de hardware e software tornou-se uma grande preocupação. À medida que a complexidade dos sistemas aumenta, as suas vulnerabilidades a sofisticadas técnicas de ataque têm proporcionalmente escalado. Frequentemente o problema reside na heterogenidade de dispositivos conectados ao veículo, tornando difícil a convergência da monitorização de todos os protocolos num único produto de segurança. Por esse motivo, o mercado requer ferramentas mais avançadas para a monitorizar ambientes críticos à vida humana, tais como os nossos automóveis. Considerando que existem várias formas de interagir com os sistemas de entretenimento do automóvel como o Bluetooth, o Wi-fi ou CDs multimédia, a necessidade de auditar as suas interfaces tornou-se uma prioridade, uma vez que elas representam um sério meio de aceeso à rede interna do carro. Atualmente, os mecanismos de segurança de um carro focam-se na monitotização da rede CAN, deixando para trás as tecnologias referidas e não contemplando os sistemas não críticos. Como exemplo disso, o Bluetooth traz desafios diferentes da rede CAN, uma vez que interage diretamente com o utilizador e está exposto a ataques externos. Uma abordagem alternativa para tornar o automóvel num sistema mais robusto é manter sob supervisão as comunicações que com este são estabelecidas. Ao implementar uma detecção de intrusão baseada em anomalias, esta dissertação visa analisar o protocolo Bluetooth no sentido de identificar interações anormais que possam alertar para uma situação fora dos padrões de utilização. Em última análise, este produto de software embebido incorpora uma grande margem de auto-aprendizagem, que é vital para enfrentar quaisquer ameaças desconhecidas e aumentar os níveis de segurança globais. Ao longo deste documento, apresentamos o estudo do problema seguido de uma metodologia alternativa que implementa um algoritmo baseado numa LSTM para prever a sequência de comandos HCI correspondentes a tráfego Bluetooth normal. Os resultados mostram a forma como esta abordagem pode impactar a deteção de intrusões nestes ambientes ao demonstrar uma grande capacidade para identificar padrões anómalos no conjunto de dados considerado.In the last few years, hardware and software security have become a major concern. As the systems’ complexity increases, its vulnerabilities to several sophisticated attack techniques have escalated likewise. Quite often, the problem lies in the heterogeneity of the devices connected to the vehicle, making it difficult to converge the monitoring systems of all existing protocols into one security product. Thereby, the market requires more refined tools to monitor life-risky environments such as personal vehicles. Considering that there are several ways to interact with the car’s infotainment system, such as Wi-fi, Bluetooth, or CD player, the need to audit these interfaces has become a priority as they represent a serious channel to reach the internal car network. Nowadays, security in car networks focuses on CAN bus monitoring, leaving behind the aforementioned technologies and not contemplating other non-critical systems. As an example of these concerns, Bluetooth brings different challenges compared to CAN as it interacts directly with the user, being exposed to external attacks. An alternative approach to converting modern vehicles and their set of computers into more robust systems is to keep track of established communications with them. By enforcing anomaly-based intrusion detection this dissertation aims to analyze the Bluetooth protocol to identify abnormal user interactions that may alert for a non conforming pattern. Ultimately, such embedded software product incorporates a self-learning edge, which is vital to face newly developed threats and increasing global security levels. Throughout this document, we present the study case followed by an alternative methodology that implements an LSTM based algorithm to predict a sequence of HCI commands corresponding to normal Bluetooth traffic. The results show how this approach can impact intrusion detection in such environments by expressing a high capability of identifying abnormal patterns in the considered data

    Cyber Threats Facing Autonomous and Connected Vehicles: Future Challenges

    Get PDF
    Vehicles are currently being developed and sold with increasing levels of connectivity and automation. As with all networked computing devices, increased connectivity often results in a heightened risk of a cyber security attack. Furthermore, increased automation exacerbates any risk by increasing the opportunities for the adversary to implement a successful attack. In this paper, a large volume of publicly accessible literature is reviewed and compartmentalised based on the vulnerabilities identified and mitigation techniques developed. This review highlighted that the majority of research is reactive and vulnerabilities are often discovered by friendly adversaries (white-hat hackers). Many gaps in the knowledge base were identified. Priority should be given to address these knowledge gaps to minimise future cyber security risks in the connected and autonomous vehicle sector
    • …
    corecore