6,802 research outputs found

    Highly Scalable Algorithms for Robust String Barcoding

    Full text link
    String barcoding is a recently introduced technique for genomic-based identification of microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the applicability range to thousands of bacterial size genomes. Experimental results on both randomly generated and NCBI genomic data show that whole-genome based selection results in a number of distinguishers nearly matching the information theoretic lower bounds for the problem

    Bacterial Community Reconstruction Using A Single Sequencing Reaction

    Full text link
    Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. While current methods enable in-depth study of a small number of communities, a simple tool for breadth studies of bacterial population composition in a large number of samples is lacking. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. This method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of the known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a practical and efficient way for identifying bacterial species compositions in biological samples.Comment: 28 pages, 12 figure

    The genetic basis for adaptation of model-designed syntrophic co-cultures.

    Get PDF
    Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E. coli communities can be established where the mutant strains are metabolically coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli auxotrophic strains that require significant metabolite uptake to grow. These predicted knockouts included a diverse set of novel non-specific auxotrophs that result from inhibition of major biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains-with diverse metabolic deficiencies-were co-cultured with an L-histidine auxotroph and optimized via adaptive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed by each strain to achieve higher community growth rates and provided insight into mechanisms for adapting to the syntrophic niche. A community model of metabolism and gene expression was utilized to predict the relative community composition and fundamental characteristics of the evolved communities. This work presents new insight into the genetic strategies underlying viable nascent community formation and a cutting-edge computational method to elucidate metabolic changes that empower the creation of cooperative communities

    Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation

    Get PDF
    IndexaciĂłn: Web of Science.Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e(-5). None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).http://journal.frontiersin.org/article/10.3389/fmicb.2016.02035/ful

    Asynchronous Teams for probe selection problems

    Get PDF
    AbstractThe selection of probe sets for hybridization experiments directly affects the efficiency and cost of the analysis. We propose the application of the Asynchronous Team (A-Team) technique to determine near-optimal probe sets. An A-Team is comprised of several different heuristic algorithms that communicate with each other via shared memories. The A-Team method has been applied successfully to several problems including the Set Covering Problem, the Traveling Salesman Problem, and the Point-to-Point Connection Problem, and lends itself well to the Probe Selection Problem. We designed and developed a C + + program to run instances of the Minimum Cost Probe Set and Maximum Distinguishing Probe Set problems. A program description and our results are presented in the paper

    APPLICATIONS OF MACHINE LEARNING IN MICROBIAL FORENSICS

    Get PDF
    Microbial ecosystems are complex, with hundreds of members interacting with each other and the environment. The intricate and hidden behaviors underlying these interactions make research questions challenging – but can be better understood through machine learning. However, most machine learning that is used in microbiome work is a black box form of investigation, where accurate predictions can be made, but the inner logic behind what is driving prediction is hidden behind nontransparent layers of complexity. Accordingly, the goal of this dissertation is to provide an interpretable and in-depth machine learning approach to investigate microbial biogeography and to use micro-organisms as novel tools to detect geospatial location and object provenance (previous known origin). These contributions follow with a framework that allows extraction of interpretable metrics and actionable insights from microbiome-based machine learning models. The first part of this work provides an overview of machine learning in the context of microbial ecology, human microbiome studies and environmental monitoring – outlining common practice and shortcomings. The second part of this work demonstrates a field study to demonstrate how machine learning can be used to characterize patterns in microbial biogeography globally – using microbes from ports located around the world. The third part of this work studies the persistence and stability of natural microbial communities from the environment that have colonized objects (vessels) and stay attached as they travel through the water. Finally, the last part of this dissertation provides a robust framework for investigating the microbiome. This framework provides a reasonable understanding of the data being used in microbiome-based machine learning and allows researchers to better apprehend and interpret results. Together, these extensive experiments assist an understanding of how to carry an in-silico design that characterizes candidate microbial biomarkers from real world settings to a rapid, field deployable diagnostic assay. The work presented here provides evidence for the use of microbial forensics as a toolkit to expand our basic understanding of microbial biogeography, microbial community stability and persistence in complex systems, and the ability of machine learning to be applied to downstream molecular detection platforms for rapid and accurate detection

    Dynamic probe selection for studying microbial transcriptome with high-density genomic tiling microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current commercial high-density oligonucleotide microarrays can hold millions of probe spots on a single microscopic glass slide and are ideal for studying the transcriptome of microbial genomes using a tiling probe design. This paper describes a comprehensive computational pipeline implemented specifically for designing tiling probe sets to study microbial transcriptome profiles.</p> <p>Results</p> <p>The pipeline identifies every possible probe sequence from both forward and reverse-complement strands of all DNA sequences in the target genome including circular or linear chromosomes and plasmids. Final probe sequence lengths are adjusted based on the maximal oligonucleotide synthesis cycles and best isothermality allowed. Optimal probes are then selected in two stages - sequential and gap-filling. In the sequential stage, probes are selected from sequence windows tiled alongside the genome. In the gap-filling stage, additional probes are selected from the largest gaps between adjacent probes that have already been selected, until a predefined number of probes is reached. Selection of the highest quality probe within each window and gap is based on five criteria: sequence uniqueness, probe self-annealing, melting temperature, oligonucleotide length, and probe position.</p> <p>Conclusions</p> <p>The probe selection pipeline evaluates global and local probe sequence properties and selects a set of probes dynamically and evenly distributed along the target genome. Unique to other similar methods, an exact number of non-redundant probes can be designed to utilize all the available probe spots on any chosen microarray platform. The pipeline can be applied to microbial genomes when designing high-density tiling arrays for comparative genomics, ChIP chip, gene expression and comprehensive transcriptome studies.</p
    • …
    corecore