745 research outputs found

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios

    Simulation and Performance Evaluation of Algorithms for Unmanned Aircraft Conflict Detection and Resolution

    Get PDF
    The problem of aircraft conflict detection and resolution (CDR) in uncertainty is addressed in this thesis. The main goal in CDR is to provide safety for the aircraft while minimizing their fuel consumption and flight delays. In reality, a high degree of uncertainty can exist in certain aircraft-aircraft encounters especially in cases where aircraft do not have the capabilities to communicate with each other. Through the use of a probabilistic approach and a multiple model (MM) trajectory information processing framework, this uncertainty can be effectively handled. For conflict detection, a randomized Monte Carlo (MC) algorithm is used to accurately detect conflicts, and, if a conflict is detected, a conflict resolution algorithm is run that utilizes a sequential list Viterbi algorithm. This thesis presents the MM CDR method and a comprehensive MC simulation and performance evaluation study that demonstrates its capabilities and efficiency

    Random media and processes estimation using non-linear filtering techniques: application to ensemble weather forecast and aircraft trajectories

    Get PDF
    L'erreur de prédiction d'une trajectoire avion peut être expliquée par différents facteurs. Les incertitudes associées à la prévision météorologique sont l'un d'entre-eux. Qui plus est, l'erreur de prévision de vent a un effet non négligeable sur l'erreur de prédiction de la position d'un avion. En regardant le problème sous un autre angle, il s'avère que les avions peuvent être utilisés comme des capteurs locaux pour estimer l'erreur de prévision de vent. Dans ce travail nous décrivons ce problème d'estimation à l'aide de plusieurs processus d'acquisition d'un même champ aléatoire. Quand ce champ est homogène, nous montrons que le problème est équivalent à plusieurs processus aléatoires évoluant dans un même environnement aléatoire pour lequel nous donnons un modèle de Feynman-Kac. Nous en dérivons une approximation particulaire et fournissons pour les estimateurs obtenus des résultats de convergence. Quand le champ n'est pas homogène mais qu'une décomposition en sous-domaine homogène est possible, nous proposons un modèle différent basé sur le couplage de plusieurs processus d'acquisition. Nous en déduisons un modèle de Feynman-Kac et suggérons une approximation particulaire du flot de mesure. Par ailleurs, pour pouvoir traiter un trafic aérien, nous développons un modèle de prédiction de trajectoire avion. Finalement nous démontrons dans le cadre de simulations que nos algorithmes peuvent estimer les erreurs de prévisions de vent en utilisant les observations délivrées par les avions le long de leur trajectoire.Aircraft trajectory prediction error can be explained by different factors. One of them is the weather forecast uncertainties. For example, the wind forecast error has a non negligible impact on the along track accuracy for the predicted aircraft position. From a different perspective, that means that aircrafts can be used as local sensors to estimate the weather forecast error. In this work we describe the estimation problem as several acquisition processes of a same random field. When the field is homogeneous, we prove that they are equivalent to random processes evolving in a random media for which a Feynman-Kac formulation is done. Then we give a particle-based approximation and provide convergence results of the ensuing estimators. When the random field is not homogeneous but can be decomposed in homogeneous sub-domains, a different model is proposed based on the coupling of different acquisition processes. From there, a Feynman-Kac formulation is derived and its particle-based approximation is suggested. Furthermore, we develop an aircraft trajectory prediction model. Finally we demonstrate on a simulation set-up that our algorithms can estimate the wind forecast errors using the aircraft observations delivered along their trajectory
    • …
    corecore