2,673 research outputs found

    Performance analysis of spectrum sensing techniques for future wireless networks

    Get PDF
    In this thesis, spectrum sensing techniques are investigated for cognitive radio (CR) networks in order to improve the sensing and transmission performance of secondary networks. Specifically, the detailed exploration comprises of three areas, including single-node spectrum sensing based on eigenvalue-based detection, cooperative spectrum sensing under random secondary networks and full-duplex (FD) spectrum sensing and sharing techniques. In the first technical chapter of this thesis, eigenvalue-based spectrum sensing techniques, including maximum eigenvalue detection (MED), maximum minimum eigenvalue (MME) detection, energy with minimum eigenvalue (EME) detection and the generalized likelihood ratio test (GLRT) eigenvalue detector, are investigated in terms of total error rates and achievable throughput. Firstly, in order to consider the benefits of primary users (PUs) and secondary users (SUs) simultaneously, the optimal decision thresholds are investigated to minimize the total error rate, i.e. the summation of missed detection and false alarm rate. Secondly, the sensing-throughput trade-off is studied based on the GLRT detector and the optimal sensing time is obtained for maximizing the achievable throughput of secondary communications when the target probability of detection is achieved. In the second technical chapter, the centralized GLRT-based cooperative sensing technique is evaluated by utilizing a homogeneous Poisson point process (PPP). Firstly, since collaborating all the available SUs does not always achieve the best sensing performance under a random secondary network, the optimal number of cooperating SUs is investigated to minimize the total error rate of the final decision. Secondly, the achievable ergodic capacity and throughput of SUs are studied and the technique of determining an appropriate number of cooperating SUs is proposed to optimize the secondary transmission performance based on a target total error rate requirement. In the last technical chapter, FD spectrum sensing (FDSS) and sensing-based spectrum sharing (FD-SBSS) are investigated. There exists a threshold pair, not a single threshold, due to the self-interference caused by the simultaneous sensing and transmission. Firstly, by utilizing the derived expressions of false alarm and detection rates, the optimal decision threshold pair is obtained to minimize total error rate for the FDSS scheme. Secondly, in order to further improve the secondary transmission performance, the FD-SBSS scheme is proposed and the collision and spectrum waste probabilities are studied. Furthermore, different antenna partitioning methods are proposed to maximize the achievable throughput of SUs under both FDSS and FD-SBSS schemes

    Cooperative Spectrum Sensing based on the Limiting Eigenvalue Ratio Distribution in Wishart Matrices

    Full text link
    Recent advances in random matrix theory have spurred the adoption of eigenvalue-based detection techniques for cooperative spectrum sensing in cognitive radio. Most of such techniques use the ratio between the largest and the smallest eigenvalues of the received signal covariance matrix to infer the presence or absence of the primary signal. The results derived so far in this field are based on asymptotical assumptions, due to the difficulties in characterizing the exact distribution of the eigenvalues ratio. By exploiting a recent result on the limiting distribution of the smallest eigenvalue in complex Wishart matrices, in this paper we derive an expression for the limiting eigenvalue ratio distribution, which turns out to be much more accurate than the previous approximations also in the non-asymptotical region. This result is then straightforwardly applied to calculate the decision threshold as a function of a target probability of false alarm. Numerical simulations show that the proposed detection rule provides a substantial performance improvement compared to the other eigenvalue-based algorithms.Comment: 7 pages, 2 figures, submitted to IEEE Communications Letter

    Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing

    Get PDF
    In cognitive radio networks, the licensed frequency bands of the primary users (PUs) are available to the secondary user (SU) provided that they do not cause significant interference to the PUs. In this study, the authors analysed the normalised throughput of the SU with multiple PUs coexisting under any frequency division multiple access communication protocol. The authors consider a cognitive radio transmission where the frame structure consists of sensing and data transmission slots. In order to achieve the maximum normalised throughput of the SU and control the interference level to the legal PUs, the optimal frame length of the SU is found via simulation. In this context, a new analytical formula has been expressed for the achievable normalised throughput of SU with multiple PUs under prefect and imperfect spectrum sensing scenarios. Moreover, the impact of imperfect sensing, variable frame length of SU and the variable PU traffic loads, on the normalised throughput has been critically investigated. It has been shown that the analytical and simulation results are in perfect agreement. The authors analytical results are much useful to determine how to select the frame duration length subject to the parameters of cognitive radio network, such as network traffic load, achievable sensing accuracy and number of coexisting PUs

    Peak to average power ratio based spatial spectrum sensing for cognitive radio systems

    Get PDF
    The recent convergence of wireless standards for incorporation of spatial dimension in wireless systems has made spatial spectrum sensing based on Peak to Average Power Ratio (PAPR) of the received signal, a promising approach. This added dimension is principally exploited for stream multiplexing, user multiplexing and spatial diversity. Considering such a wireless environment for primary users, we propose an algorithm for spectrum sensing by secondary users which are also equipped with multiple antennas. The proposed spatial spectrum sensing algorithm is based on the PAPR of the spatially received signals. Simulation results show the improved performance once the information regarding spatial diversity of the primary users is incorporated in the proposed algorithm. Moreover, through simulations a better performance is achieved by using different diversity schemes and different parameters like sensing time and scanning interval

    Collaborative Spectrum Sensing Based on Upper Bound on Joint PDF of Exreme Eigenvalues

    Get PDF
    Detection based on eigenvalues of received signal covariance matrix is currently one of the most effective solution for spectrum sensing problem in cognitive radios. However, the results of these schemes often depend on asymptotic assumptions since the distribution of ratio of extreme eigenvalues is exceptionally mathematically complex to compute in practice. In this paper, a new approach to determine the distribution of ratio of the largest and the smallest eigenvalues is introduced to calculate the decision threshold and sense the spectrum. In this context, we derive a simple and analytically tractable expression for the distribution of the ratio of the largest and the smallest eigenvalues based on upper bound on the joint probability density function (PDF) of the largest and the smallest eigenvalues of the received covariance matrix. The performance analysis of proposed approach is compared with the empirical results. The decision threshold as a function of a given probability of false alarm is calculated to illustrate the effectiveness of the proposed approach

    Spectrum sensing by cognitive radios at very low SNR

    Full text link
    Spectrum sensing is one of the enabling functionalities for cognitive radio (CR) systems to operate in the spectrum white space. To protect the primary incumbent users from interference, the CR is required to detect incumbent signals at very low signal-to-noise ratio (SNR). In this paper, we present a spectrum sensing technique based on correlating spectra for detection of television (TV) broadcasting signals. The basic strategy is to correlate the periodogram of the received signal with the a priori known spectral features of the primary signal. We show that according to the Neyman-Pearson criterion, this spectral correlation-based sensing technique is asymptotically optimal at very low SNR and with a large sensing time. From the system design perspective, we analyze the effect of the spectral features on the spectrum sensing performance. Through the optimization analysis, we obtain useful insights on how to choose effective spectral features to achieve reliable sensing. Simulation results show that the proposed sensing technique can reliably detect analog and digital TV signals at SNR as low as -20 dB.Comment: IEEE Global Communications Conference 200

    SNR-Walls in Eigenvalue-based Spectrum Sensing

    Full text link
    Various spectrum sensing approaches have been shown to suffer from a so-called SNR-wall, an SNR value below which a detector cannot perform robustly no matter how many observations are used. Up to now, the eigenvalue-based maximum-minimum-eigenvalue (MME) detector has been a notable exception. For instance, the model uncertainty of imperfect knowledge of the receiver noise power, which is known to be responsible for the energy detector's fundamental limits, does not adversely affect the MME detector's performance. While additive white Gaussian noise (AWGN) is a standard assumption in wireless communications, it is not a reasonable one for the MME detector. In fact, in this work we prove that uncertainty in the amount of noise coloring does lead to an SNR-wall for the MME detector. We derive a lower bound on this SNR-wall and evaluate it for example scenarios. The findings are supported by numerical simulations.Comment: 17 pages, 3 figures, submitted to EURASIP Journal on Wireless Communications and Networkin

    Exact and Asymptotic Analysis of Largest Eigenvalue Based Spectrum Sensing

    Get PDF
    • …
    corecore